5 research outputs found

    Role of Trade in India’s Rising Atmospheric Mercury Emissions

    No full text
    India is among the largest emitters of atmospheric mercury (Hg) in the world. India’s production activities have associated Hg emissions which can be attributed to final demands (e.g., purchases by households, governments, and private investments) of nations driving upstream production from the demand perspective, or primary inputs (e.g., labor and capital supply) of nations enabling downstream production from the supply perspective. This study identifies key nations and sectors that directly and indirectly drove India’s Hg emissions from both the demand and supply perspectives during 2004–2014. While domestic final demand was the dominant driver from the demand perspective (driving about 80–85% of the total), USA, China, and UAE are important foreign drivers. Similarly, from the supply perspective, domestic primary inputs were the dominant drivers. However, the share of foreign inputs enabling Hg emissions increased from 16 to 23% during the decade. Saudi Arabia, Indonesia, Australia, and China are the top foreign supply-side drivers. The Construction sector is an important demand-side driver, whereas fossil fuel sectors are important supply-side drivers. These findings can guide global and national policies for demand- and supply-side management of Hg emissions in India and assist in the successful implementation of the Minamata Convention on Mercury

    Role of Trade in India’s Rising Atmospheric Mercury Emissions

    No full text
    India is among the largest emitters of atmospheric mercury (Hg) in the world. India’s production activities have associated Hg emissions which can be attributed to final demands (e.g., purchases by households, governments, and private investments) of nations driving upstream production from the demand perspective, or primary inputs (e.g., labor and capital supply) of nations enabling downstream production from the supply perspective. This study identifies key nations and sectors that directly and indirectly drove India’s Hg emissions from both the demand and supply perspectives during 2004–2014. While domestic final demand was the dominant driver from the demand perspective (driving about 80–85% of the total), USA, China, and UAE are important foreign drivers. Similarly, from the supply perspective, domestic primary inputs were the dominant drivers. However, the share of foreign inputs enabling Hg emissions increased from 16 to 23% during the decade. Saudi Arabia, Indonesia, Australia, and China are the top foreign supply-side drivers. The Construction sector is an important demand-side driver, whereas fossil fuel sectors are important supply-side drivers. These findings can guide global and national policies for demand- and supply-side management of Hg emissions in India and assist in the successful implementation of the Minamata Convention on Mercury

    Role of Trade in India’s Rising Atmospheric Mercury Emissions

    No full text
    India is among the largest emitters of atmospheric mercury (Hg) in the world. India’s production activities have associated Hg emissions which can be attributed to final demands (e.g., purchases by households, governments, and private investments) of nations driving upstream production from the demand perspective, or primary inputs (e.g., labor and capital supply) of nations enabling downstream production from the supply perspective. This study identifies key nations and sectors that directly and indirectly drove India’s Hg emissions from both the demand and supply perspectives during 2004–2014. While domestic final demand was the dominant driver from the demand perspective (driving about 80–85% of the total), USA, China, and UAE are important foreign drivers. Similarly, from the supply perspective, domestic primary inputs were the dominant drivers. However, the share of foreign inputs enabling Hg emissions increased from 16 to 23% during the decade. Saudi Arabia, Indonesia, Australia, and China are the top foreign supply-side drivers. The Construction sector is an important demand-side driver, whereas fossil fuel sectors are important supply-side drivers. These findings can guide global and national policies for demand- and supply-side management of Hg emissions in India and assist in the successful implementation of the Minamata Convention on Mercury

    Multiperspective Decoupling Analyses between Global Embodied Carbon Chains and Global Value Chains

    No full text
    Decoupling global economic growth from carbon emissions is essential for mitigating global climate change while maintaining continuous economic growth. Traditional production-side decoupling analysis alone is insufficient to capture the decoupling status between carbon emissions and the value added throughout global supply chains. This study investigates the decoupling status between value added and greenhouse gas (GHG) emissions during 1995–2019 from consumption and income perspectives. We find that the decoupling statuses of 17 regions (especially Russia, Australia, and Malta) show significant differences across multiple perspectives. For example, Malta’s direct GHG emissions decreased with its GDP growth from a production perspective (i.e., achieved strong decoupling). However, its consumption-based GHG emissions increased with the growth of consumption-based value added (i.e., expansive negative decoupling). Moreover, most international pairs have not yet achieved strong decoupling from consumption and income perspectives. International multilateral cooperation is crucial for decoupling global GHG emissions from economic growth across global supply chains. This study provides insights into the decoupling between embodied GHG emissions and value added from consumption and income perspectives. The findings of this study can complement existing policies on global GHG emission mitigation and sustainable development

    Multiperspective Decoupling Analyses between Global Embodied Carbon Chains and Global Value Chains

    No full text
    Decoupling global economic growth from carbon emissions is essential for mitigating global climate change while maintaining continuous economic growth. Traditional production-side decoupling analysis alone is insufficient to capture the decoupling status between carbon emissions and the value added throughout global supply chains. This study investigates the decoupling status between value added and greenhouse gas (GHG) emissions during 1995–2019 from consumption and income perspectives. We find that the decoupling statuses of 17 regions (especially Russia, Australia, and Malta) show significant differences across multiple perspectives. For example, Malta’s direct GHG emissions decreased with its GDP growth from a production perspective (i.e., achieved strong decoupling). However, its consumption-based GHG emissions increased with the growth of consumption-based value added (i.e., expansive negative decoupling). Moreover, most international pairs have not yet achieved strong decoupling from consumption and income perspectives. International multilateral cooperation is crucial for decoupling global GHG emissions from economic growth across global supply chains. This study provides insights into the decoupling between embodied GHG emissions and value added from consumption and income perspectives. The findings of this study can complement existing policies on global GHG emission mitigation and sustainable development
    corecore