10 research outputs found

    Strong and Facile Adhesives Based on Phase Transitional Poly(acrylic acid)/Poly(ethylenimine) Complexes

    No full text
    Polyelectrolyte complexes have demonstrated their potential application as adhesives to several substrates. However, it is unfortunate that the in-depth study focusing on polyelectrolyte phases as well as rheological analysis is insufficient to uncover the origin of the adhesive properties. Here, we precisely investigated the factors of polyelectrolyte adhesives in terms of electrostatic interaction using conventional rod coating and pH-induced phase transition, followed by a phase study between poly(acrylic acid) and branched poly(ethylenimine). The phase was systemically controlled by parameters such as polymer ratio, concentration of NaCl, and pH level. Then, the rheological modulus of each phase was studied to understand physical cross-linking. In relation to polyelectrolyte adhesives, it was found that a higher viscous phase led to more intensive adhesion strength. In addition, thermal treatment helped to obtain a dramatic increase in adhesion strength (2.4 MPa), which was accomplished by a conversion reaction from carboxylic acid to amide. This chemically cross-linked gel adhesive performance could compete with commercial grade adhesive, and this study creates a pathway to design polyelectrolyte adhesive regarding a facile process and applications

    Phase-Transitional Ionogel-Based Supercapacitors for a Selective Operation

    No full text
    As the demand for energy storage devices increases, the importance of electrolytes for supercapacitors (SCs) is further emphasized. However, since ions in electrolytes are always in an active state, it is difficult to store energy for a long time due to ion diffusion. Here, we have synthesized a phase-transitional ionogel and fabricated an SC based on the ionogel. The 1-ethyl-3-methylimidazolium nitrate ([EMIM]+[NO3]−) ionogel changes its phase from crystal to amorphous when the temperature was elevated above its phase transition temperature (∼44 °C). When the temperature is elevated from 25 to 45 °C, the resistivity of the gel is decreased from 2318.4 kΩ·cm to 43.2 Ω·cm. At the same time, the capacitance is boosted from 0.02 to 37.35 F g–1, and this change was repeatable. Furthermore, the SC exhibits an energy density of 7.77 Wh kg–1 with a power density of 4000 W kg–1 at 45 °C and shows a stable capacitance retention of 87.5% after 3000 cycles of test. The phase transition can switch the SCs from “operating mode” to “storage mode” when the temperature drops. A degree of self-discharge is greatly suppressed in the storage mode, storing 89.51% of charges after 24 h in self-discharge tests

    Reversible Crosslinking of Polymer/Metal-Ion Complexes for a Microfluidic Switch

    No full text
    The importance of chitosan has been strongly emphasized in literature because this natural polymer could not only remove heavy metal ions in water but also have the potential for recyclability. However, reversible phase transition and its dynamics, which are highlighting areas of a recycle process, have not been studied sufficiently. Here, we present dynamic studies of the dissolution as well as the gelation of a physically crosslinked chitosan hydrogel. Specifically, a one-dimensional gel growth system and an acetate buffer solution were prepared for the precise analysis of the dominant factors affecting a phase transition. The dissolution rate was found to be regulated by three major factors of the pH level, Cu2+, and NO2–, while the gelation rate was strongly governed by the concentration of OH–. Apart from the gelation rate, the use of Cu2+ led to the rapid realization of gel characteristics. The results here provide strategies for process engineering, ultimately to determine the phase-transition rates. In addition, a microfluidic switch was successfully operated based on a better understanding of the reversible crosslinking of the chitosan hydrogel. Rapid gelation was required to close the channel, and a quick switchover was achieved by a dissolution enhancement strategy. As a result, factors that regulated the rates of gelation or dissolution were found to be useful to operate the fluidic switch

    Highly Stretchable and Notch-Insensitive Hydrogel Based on Polyacrylamide and Milk Protein

    No full text
    Protein-based hydrogels have received attention for biomedical applications and tissue engineering because they are biocompatible and abundant. However, the poor mechanical properties of these hydrogels remain a hurdle for practical use. We have developed a highly stretchable and notch-insensitive hydrogel by integrating casein micelles into polyacrylamide (PAAm) networks. In the casein-PAAm hybrid gels, casein micelles and polyacrylamide chains synergistically enhance the mechanical properties. Casein-PAAm hybrid gels are highly stretchable, stretching to more than 35 times their initial length under uniaxial tension. The hybrid gels are notch-insensitive and tough with a fracture energy of approximately 3000 J/m<sup>2</sup>. A new mechanism of energy dissipation that includes friction between casein micelles and plastic deformation of casein micelles was suggested

    Anisotropically Conductive Hydrogels with Directionally Aligned PEDOT:PSS in a PVA Matrix

    No full text
    Electrical anisotropy, which is characterized by the efficient transmission of electrical signals in specific directions, is prevalent in both natural and engineered systems. However, traditional anisotropically conductive materials are often rigid and dry, thus limiting their utility in applications aiming for the seamless integration of various technologies with biological tissues. In the present study, we introduce a method for precisely controlling the microstructures of conductive and insulating polymers to create highly anisotropically conductive composite hydrogels. Our methodology involves combining aligned poly­(vinyl alcohol) microfibrils, infused poly­(3,4-ethylenedioxythiophene) polystyrenesulfonate, and sodium citrate precipitation to form dense, aligned conductive paths. This significantly enhances the electrical conductivity anisotropy (σ∥/σ⊥ ≈ 60.8) within these composite hydrogels

    Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations

    No full text
    We successfully synthesized a family of alginate/polyacrylamide hydrogels using various multivalent cations. These hydrogels exhibit exceptional mechanical properties. In particular, we discovered that the hydrogels cross-linked by trivalent cations are much stronger than those cross-linked by divalent cations. We demonstrate stretchability and toughness of the hydrogels by inflating a hydrogel sheet into a large balloon, and the elasticity by using a hydrogel block as a vibration isolator in a forced vibration test. The excellent mechanical properties of these hydrogels may open up applications for hydrogels

    Development of Organic/Inorganic Hybrid Materials for Fully Degradable Reactive Oxygen Species-Releasing Stents for Antirestenosis

    No full text
    Despite innovative advances in stent technology, restenosis remains a crucial issue for the clinical implantation of stents. Reactive oxygen species (ROS) are known to potentially accelerate re-endothelialization and lower the risk of restenosis by selectively controlling endothelial cells and smooth muscle cells. Recently, several studies have been conducted to develop biodegradable polymeric stents. As biodegradable polymers are not electrically conductive, double metallic layers are required to constitute a galvanic couple for ROS generation. Here, we report a new biodegradable hybrid material composed of a biodegradable polymer substrate and double anodic/cathodic metallic layers for enhancing re-endothelialization and suppressing restenosis. Pure Zn and Mg films (3 μm thick) were deposited onto poly-l-lactic acid (PLLA) substrates by DC magnetron sputtering, and a long-term immersion test using biodegradable hybrid materials was performed in phosphate-buffered solution (PBS) for 2 weeks. The concentrations of superoxide anions and hydrogen peroxide generated by the corrosion of biodegradable metallic films were monitored every 1 or 2 days. Both superoxide anions and hydrogen peroxide were seamlessly generated even after the complete consumption of the anodic Mg layer. It was confirmed that the superoxide anions and hydrogen peroxide were formed not only by the galvanic corrosion between the anode and cathode layers but also by the corrosion of a single Mg or Zn layer. The corrosion products of the Mg and Zn films in PBS were phosphate, oxide, or chloride of the biodegradable metals. Thus, it is concluded that ROS generation by the corrosion of PLLA-based hybrid materials can be sustained until the exhaustion of the cathode metal layer

    Selective Cell–Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations

    No full text
    The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell–cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation
    corecore