13 research outputs found

    Usage Trends of Open Access and Local Journals: A Korean Case Study - Fig 1

    No full text
    <p>(A) Proportion of papers published in OA journals compared with all papers in WoS (red) from 1998 to 2014, and for papers from SNU (green). The bar chart is based on a fixed list of journals defined as OA in 2014, and the line graph is based on the OA filter supplied by WoS. (B) Proportion of papers published in OA journals compared with all the papers in Scopus (red) from 1998 to 2014, and for papers from SNU (green). The proportion is based on a fixed list of journals defined as OA in 2014.</p

    Trends in the proportion of cited papers from subscription SCI journals (local or global), OA journals (local or global), local or OA journals, and local journals (OA or subscription) among all referenced articles with matched ISSNs.

    No full text
    <p>Trends in the proportion of cited papers from subscription SCI journals (local or global), OA journals (local or global), local or OA journals, and local journals (OA or subscription) among all referenced articles with matched ISSNs.</p

    Relative proportions of different publishing statuses of papers in WoS cited between 1998 and 2011 by authors from Seoul National University.

    No full text
    <p>Relative proportions of different publishing statuses of papers in WoS cited between 1998 and 2011 by authors from Seoul National University.</p

    Data_Sheet_1_Climate Regimes Override Micro-Site Effects on the Summer Temperature Signal of Scots Pine at Its Northern Distribution Limits.zip

    No full text
    Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901–2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites: While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.</p
    corecore