33 research outputs found
Cluster-Aided Mobility Predictions
Predicting the future location of users in wireless net- works has numerous
applications, and can help service providers to improve the quality of service
perceived by their clients. The location predictors proposed so far estimate
the next location of a specific user by inspecting the past individual
trajectories of this user. As a consequence, when the training data collected
for a given user is limited, the resulting prediction is inaccurate. In this
paper, we develop cluster-aided predictors that exploit past trajectories
collected from all users to predict the next location of a given user. These
predictors rely on clustering techniques and extract from the training data
similarities among the mobility patterns of the various users to improve the
prediction accuracy. Specifically, we present CAMP (Cluster-Aided Mobility
Predictor), a cluster-aided predictor whose design is based on recent
non-parametric bayesian statistical tools. CAMP is robust and adaptive in the
sense that it exploits similarities in users' mobility only if such
similarities are really present in the training data. We analytically prove the
consistency of the predictions provided by CAMP, and investigate its
performance using two large-scale datasets. CAMP significantly outperforms
existing predictors, and in particular those that only exploit individual past
trajectories
cc-differential uniformity, (almost) perfect cc-nonlinearity, and equivalences
In this article, we introduce new notions -differential uniformity,
-differential spectrum, PccN functions and APccN functions, and investigate
their properties. We also introduce -CCZ equivalence, -EA equivalence,
and -equivalence. We show that -differential uniformity is invariant
under -equivalence, and -differential uniformity and -differential
spectrum are preserved under -CCZ equivalence. We characterize
-differential uniformity of vectorial Boolean functions in terms of the
Walsh transformation. We investigate -differential uniformity of power
functions . We also illustrate examples to prove that -CCZ
equivalence is strictly more general than -EA equivalence.Comment: 18 pages. Comments welcom
On cryptographic parameters of permutation polynomials of the form
The differential uniformity, the boomerang uniformity, and the extended Walsh spectrum etc are important parameters to evaluate the security of S(substitution)-box. In this paper, we introduce efficient formulas to compute these cryptographic parameters of permutation polynomials of the form over a finite field of elements, where is a positive integer and is a positive divisor of . The computational cost of those formulas is proportional to . We investigate differentially 4-uniform permutation polynomials of the form and compute the boomerang spectrum and the extended Walsh spectrum of them using the suggested formulas when is even, where is the smallest nontrivial for even . We also investigate the differential uniformity of some permutation polynomials introduced in some recent papers for the case $d=2^{n/2}+1
Conventional reversal of rocuronium-induced neuromuscular blockade by sugammadex in Korean children: pharmacokinetics, efficacy, and safety analyses
Background: Sugammadex is known to reverse neuromuscular blockade induced by non-depolarizing agents. In children, the recommended dose for reversal of moderate neuromuscular blockade is 2 mg/kg. We investigated the pharmacokinetics and pharmacodynamics of sugammadex in Korean children.Methods: Children (2–17 years of age) undergoing brain or spine surgery were enrolled and randomly assigned to control (neostigmine) and 2, 4, or 8 mg/kg sugammadex groups. Following induction of anesthesia and monitoring of the response to train-of-four stimulation, 1 mg/kg rocuronium was intravenously administered. Upon reappearance of the second twitch to train-of-four stimulation, the study drug was administered according to group allocation. The plasma concentrations of rocuronium and sugammadex were serially measured at nine predefined time points following study drug administration. To determine efficacy, we measured the time elapsed from drug administration to recovery of T4/T1 ≥ 0.9. For pharmacokinetics, non-compartmental analysis was performed and we monitored adverse event occurrence from the time of study drug administration until 24 h post-surgery.Results: Among the 29 enrolled participants, the sugammadex (2 mg/kg) and control groups showed recovery times [median (interquartile range)] of 1.3 (1.0–1.9) and 7.7 (5.3–21.0) min, respectively (p = 0.002). There were no significant differences in recovery time among the participants in sugammadex groups. The pharmacokinetics of sugammadex were comparable to those of literature findings. Although two hypotensive events related to sugammadex were observed, no intervention was necessary.Conclusion: The findings of this pharmacokinetic analysis and efficacy study of sugammadex in Korean children indicated that sugammadex (2 mg/kg) may be safely administered for reversing moderate neuromuscular blockade. Some differences in pharmacokinetics of sugammadex were observed according to age.Clinical Trial Registration:http://clinicaltrials.gov (NCT04347486
Use of adverse outcome pathways in chemical toxicity testing: potential advantages and limitations
Amid revolutionary changes in toxicity assessment brought about by increasing regulation of chemicals, adverse outcome pathways (AOPs) have emerged as a useful framework to assess adverse effect of chemicals using molecular level effect, which aid in setting environmental regulation policies. AOPs are biological maps that describe mechanisms linking molecular initiating event to adverse outcomes (AOs) at an individual level. Each AOP consists of a molecular initiating event, key events, and an AO. AOPs use molecular markers to predict endpoints currently used in risk assessment, promote alternatives to animal model-based test methods, and provide scientific explanations for the effects of chemical exposures. Moreover, AOPs enhance certainty in interpreting existing and new information. The application of AOPs in chemical toxicity testing will help shift the existing paradigm of chemical management based on apical endpoints toward active application of in silico and in vitro data
Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies
Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs
In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors
Molecular docking is used to analyze structural complexes of a target with its ligand for understanding the chemical and structural basis of target specificity. This method has the potential to be applied for discovering molecular initiating events (MIEs) in the Adverse Outcome Pathway framework. In this study, we aimed to develop in silico–in vivo combined approach as a tool for identifying potential MIEs. We used environmental chemicals from Tox21 database to identify potential endocrine-disrupting chemicals (EDCs) through molecular docking simulation, using estrogen receptor (ER), androgen receptor (AR) and their homology models in the nematode Caenorhabditis elegans (NHR-14 and NHR-69, respectively). In vivo validation was conducted on the selected EDCs with C. elegans reproductive toxicity assay using wildtype N2, nhr-14, and nhr-69 loss-of-function mutant strains. The chemicals showed high binding affinity to tested receptors and showed the high in vivo reproductive toxicity, and this was further confirmed using the mutant strains. The present study demonstrates that the binding affinity from the molecular docking potentially correlates with in vivo toxicity. These results prove that our in silico–in vivo combined approach has the potential to be applied for identifying MIEs. This study also suggests the potential of C. elegans as useful in the in vivo model for validating the in silico approach