3 research outputs found

    HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions

    No full text
    The host–guest complexation of hydrocarbons (22 guest molecules) with cucurbit[7]­uril was investigated in aqueous solution using the indicator displacement strategy. The binding constants (10<sup>3</sup>–10<sup>9</sup> M<sup>–1</sup>) increased with guest size, pointing to the hydrophobic effect and dispersion interactions as driving forces. The measured affinities provide unique benchmark data for the binding of neutral guest molecules. Consequently, a computational blind challenge, the HYDROPHOBE challenge, was conducted to allow a comparison with state-of-the-art computational methods for predicting host–guest affinity constants. In total, three quantum-chemical (QM) data sets and two explicit-solvent molecular dynamics (MD) submissions were received. When searching for sources of uncertainty in predicting the host–guest affinities, the experimentally known hydration energies of the investigated hydrocarbons were used to test the employed solvation models (explicit solvent for MD and COSMO-RS for QM). Good correlations were obtained for both solvation models, but a rather constant offset was observed for the COSMO data, by ca. +2 kcal mol<sup>–1</sup>, which was traced back to a required reference-state correction in the QM submissions (2.38 kcal mol<sup>–1</sup>). Introduction of the reference-state correction improved the predictive power of the QM methods, particularly for small hydrocarbons up to C5

    Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers

    No full text
    The covalent diamantyl (C<sub>28</sub>H<sub>38</sub>) and oxadiamantyl (C<sub>26</sub>H<sub>34</sub>O<sub>2</sub>) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C<sub>26</sub>H<sub>34</sub>O<sub>2</sub> agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C–C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C–C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence

    Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers

    No full text
    The covalent diamantyl (C<sub>28</sub>H<sub>38</sub>) and oxadiamantyl (C<sub>26</sub>H<sub>34</sub>O<sub>2</sub>) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C<sub>26</sub>H<sub>34</sub>O<sub>2</sub> agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C–C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C–C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence
    corecore