3 research outputs found

    Glycosylated Benzoxazinoids Are Degraded during Fermentation of Wheat Bran

    No full text
    Benzoxazinoids are plant secondary metabolites found in whole grain cereal foods including bread. They are bioavailable and metabolized in humans, and therefore their potential bioactivity is of interest. However, effects of food processing on their content and structure are not yet studied. This study reports effects of bioprocessing on wheat bran benzoxazinoid content. Benzoxazinoid glycosides were completely degraded during fermentation, whereas metabolites of benzoxazinoid aglycones were formed. Fermentation conditions did not affect the conversion process, as both yeast and yeast/lactic acid bacteria mediated fermentations had generally similar impacts. Likewise, enzymatic treatment of the bioprocess samples did not affect the conversion, suggesting that these compounds most likely are freely bioavailable from the grain matrix and not linked to the cell wall polymers. Additionally, the results show that benzoxazinoids undergo structural conversion during the fermentation process, resulting in several unknown compounds that contribute to the phytochemical intake and necessitate further analysis

    Impact of Wheat Aleurone Structure on Metabolic Disorders Caused by a High-Fat Diet in Mice

    No full text
    The present study investigated the potential of native and structurally modified wheat aleurone, by dry-grinding or enzymatic treatments, to counteract metabolic disorders in mice with diet-induced obesity (DIO). C57BL6/J mice were first fed ad libitum with a high-fat diet for 9 weeks to induce obesity, after which the native or treated aleurone fractions were added (13% (w/w)) in the high-fat diets for an additional 8 weeks. The effects of the aleurone-enriched diets were evaluated by assessing body weight gain, adiposity, fasting blood glucose, plasma insulin and leptin, and anti-inflammatory and oxidative stress markers. Enrichment of the diet with native or finely ground aleurone did not improve any parameter analyzed; finely ground aleurone even slightly increased (<i>p</i> = 0.03) body weight gain. Enrichment of the diet with enzymatically treated aleurone only had a tendency toward lower body weight gain, visceral adipose tissue accumulation, fasting plasma insulin, and leptin levels

    Comparative Nontargeted Profiling of Metabolic Changes in Tissues and Biofluids in High-Fat Diet-Fed Ossabaw Pig

    No full text
    Typical clinical biomarker analyses on urine and plasma samples from human dietary interventions do not provide adequate information about diet-induced metabolic changes taking place in tissues. The aim of this study was to show how a large-scale nontargeted metabolomic approach can be used to reveal metabolite groups for generating new hypotheses of obesity-related metabolic disturbances produced in an animal model. A large spectrum of metabolites in the semipolar region, including small water-soluble molecules like betaine and dihydroxyindole, and a wide range of bile acids as well as various lipid species were detected. The high-fat diet influenced metabolic homeostasis of Ossabaw pigs, especially the lipid metabolome, throughout all the analyzed sample types, including plasma, urine, bile, liver, pancreas, brain cortex, intestinal jejunum and proximal colon. However, even dramatic metabolic changes in tissues were not necessarily observed in plasma and urine. Metabolite profiling involving multiple sample types was shown to be a feasible method for the examination of a wide spectrum of metabolic species extending from small water-soluble metabolites to an array of bile acids and lipids, thus pointing to the pathways of metabolism affected by the dietary treatment
    corecore