125 research outputs found
Quantum Computation by Adiabatic Evolution
We give a quantum algorithm for solving instances of the satisfiability
problem, based on adiabatic evolution. The evolution of the quantum state is
governed by a time-dependent Hamiltonian that interpolates between an initial
Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian,
whose ground state encodes the satisfying assignment. To ensure that the system
evolves to the desired final ground state, the evolution time must be big
enough. The time required depends on the minimum energy difference between the
two lowest states of the interpolating Hamiltonian. We are unable to estimate
this gap in general. We give some special symmetric cases of the satisfiability
problem where the symmetry allows us to estimate the gap and we show that, in
these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages;
email to [email protected]
How many functions can be distinguished with k quantum queries?
Suppose an oracle is known to hold one of a given set of D two-valued
functions. To successfully identify which function the oracle holds with k
classical queries, it must be the case that D is at most 2^k. In this paper we
derive a bound for how many functions can be distinguished with k quantum
queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n
quantum queries. Minor changes to text and corrections to reference
Unstructured Randomness, Small Gaps and Localization
We study the Hamiltonian associated with the quantum adiabatic algorithm with
a random cost function. Because the cost function lacks structure we can prove
results about the ground state. We find the ground state energy as the number
of bits goes to infinity, show that the minimum gap goes to zero exponentially
quickly, and we see a localization transition. We prove that there are no
levels approaching the ground state near the end of the evolution. We do not
know which features of this model are shared by a quantum adiabatic algorithm
applied to random instances of satisfiability since despite being random they
do have bit structure
- …