462 research outputs found

### Normality of a non-linear transformation of AR parameters: application to reflection and cepstrum coefficients

Two sets of random vectors cannot both be Gaussian if they are nonlinearly related. Thus, Autoregressive (AR)parameters and reflection coefficient (resp. cepstrum coefficient) estimators cannot both be Gaussian for a finite number of samples. However, most estimators of AR parameters and reflection coefficients (resp. cepstrum coefficients) are Gaussian asymptotically. Thus, the distribution of AR parameter and reflection coefficient (resp. cepstrum coefficient) estimates are close to Gaussian for large samples. This paper studies the ``closeness'' between the Gaussian distribution and the ``non-linear transformation of Gaussian AR parameters'' distribution. A new distance is defined which is based on the Taylor expansion of the non-linear transformation. This ``Taylor'' distance called $M$-distance is used to measure the deviations from the Gaussian distribution of reflection coefficient and cepstrum coefficient statistics. A comparison is presented between this distance and Kullback's divergence. The main advantage of the M-distance with respect to other distances is a very simple closed form expression of the deviations from normality. This closed form expression shows that the convergence of the reflection and cepstrum coefficient
distribution to its asymptotic Gaussian distribution (when the number of samples tends to infinity) depends on the position of AR model poles in the unit circle

### Detection and Estimation of Abrupt Changes contaminated by Multiplicative Gaussian Noise

The problem of abrupt change detection has received much attention in the literature. The Neyman Pearson detector can be derived and yields the well-known CUSUM algorithm, when the abrupt change is contaminated by an additive noise. However, a multiplicative noise has been observed in many signal processing applications. These applications include radar, sonar, communication and image processing. This paper addresses the problem of abrupt change detection in presence of multiplicative noise. The optimal Neyman Pearson detector is studied when the abrupt change and noise parameters are known. The parameters are unknown in most practical applications and have to be estimated. The maximum likelihood estimator is then derived for these parameters. The maximum likelihood estimator performance is determined, by comparing the estimate mean square errors with the Cramer Rao Bounds. The Neyman Pearson detector combined with the maximum likelihood estimator
yields the generalized likelihood ratio detector

### Bayesian orthogonal component analysis for sparse representation

This paper addresses the problem of identifying a lower dimensional space
where observed data can be sparsely represented. This under-complete dictionary
learning task can be formulated as a blind separation problem of sparse sources
linearly mixed with an unknown orthogonal mixing matrix. This issue is
formulated in a Bayesian framework. First, the unknown sparse sources are
modeled as Bernoulli-Gaussian processes. To promote sparsity, a weighted
mixture of an atom at zero and a Gaussian distribution is proposed as prior
distribution for the unobserved sources. A non-informative prior distribution
defined on an appropriate Stiefel manifold is elected for the mixing matrix.
The Bayesian inference on the unknown parameters is conducted using a Markov
chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is
designed to generate samples asymptotically distributed according to the joint
posterior distribution of the unknown model parameters and hyperparameters.
These samples are then used to approximate the joint maximum a posteriori
estimator of the sources and mixing matrix. Simulations conducted on synthetic
data are reported to illustrate the performance of the method for recovering
sparse representations. An application to sparse coding on under-complete
dictionary is finally investigated.Comment: Revised version. Accepted to IEEE Trans. Signal Processin

### Joint segmentation of wind speed and direction using a hierarchical model

The problem of detecting changes in wind speed and direction is considered. Bayesian priors, with various degrees of certainty, are used to represent relationships between the two time series. Segmentation is then conducted using a hierarchical Bayesian model that accounts for correlations between the wind speed and direction. A Gibbs sampling strategy overcomes the computational complexity of the hierarchical model and is used to estimate the unknown parameters and hyperparameters. Extensions to other statistical models are also discussed. These models allow us to study other joint segmentation problems including segmentation of wave amplitude and direction. The performance of the proposed algorithms is illustrated with results obtained with synthetic and real data

### Generative Supervised Classification Using Dirichlet Process Priors.

Choosing the appropriate parameter prior distributions associated to a given Bayesian model is a challenging problem. Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the available prior information. This paper studies a new generative supervised classifier which assumes that the parameter prior distributions conditioned on each class are mixtures of Dirichlet processes. The motivations for using mixtures of Dirichlet processes is their known ability to model accurately a large class of probability distributions. A Monte Carlo method allowing one to sample according to the resulting class-conditional posterior distributions is then studied. The parameters appearing in the class-conditional densities can then be estimated using these generated samples (following Bayesian learning). The proposed supervised classifier is applied to the classification of altimetric waveforms backscattered from different surfaces (oceans, ices, forests, and deserts). This classification is a first step before developing tools allowing for the extraction of useful geophysical information from altimetric waveforms backscattered from nonoceanic surfaces

### Singular ARMA signals

Singular random signals are characterized by the fact that their values at each time are singular random variables, which means that their distribution functions are continuous but with a derivative almost everywhere equal to zero. Such random variables are usually considered as without interest in engineering or signal processing problems. The purpose of this paper is to show that very
simple signals can be singular. This is especially the case for autoregressive moving average (ARMA) signals defined by white noise taking only discrete values and filters with poles located in a circle of singularity introduced in this paper. After giving the origin of singularity and analyzing its relationships with fractal properties, various simulations highlighting this structure will be presented

### Echo Cancellation - A Likelihood Ratio Test for Double-talk Versus Channel Change

Echo cancellers are in wide use in both electrical (four wire to two wire mismatch) and acoustic (speaker-microphone coupling) applications. One of the main design problems is the control logic for adaptation. Basically, the algorithm weights should be frozen in the presence of double-talk and adapt quickly in the absence of double-talk. The control logic can be quite complicated since it is often not easy to discriminate between the echo signal and the near-end speaker. This paper derives a log likelihood ratio test (LRT) for deciding between double-talk (freeze weights) and a channel change (adapt quickly) using a stationary Gaussian
stochastic input signal model. The probability density function of a sufficient statistic under each hypothesis is obtained and the performance of the test is evaluated as a function of the system parameters. The receiver operating characteristics (ROCs) indicate that it is difficult to correctly decide between double-talk and a channel change based upon a single look. However, post-detection integration of approximately one hundred sufficient statistic samples yields a detection probability close to unity (0.99) with a small false alarm probability (0.01)

### Bounds for estimation of covariance matrices from heterogeneous samples

This correspondence derives lower bounds on the mean-square error (MSE) for the estimation of a covariance matrix mbi Mp, using samples mbi Zk,k=1,...,K, whose covariance matrices mbi Mk are randomly distributed around mbi Mp. This framework can be encountered e.g., in a radar system operating in a nonhomogeneous environment, when it is desired to estimate the covariance matrix of a range cell under test, using training samples from adjacent cells, and the noise is nonhomogeneous between the cells. We consider two different assumptions for mbi Mp. First, we assume that mbi Mp is a deterministic and unknown matrix, and we derive the Cramer-Rao bound for its estimation. In a second step, we assume that mbi Mp is a random matrix, with some prior distribution, and we derive the Bayesian bound under this hypothesis

### The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments

The adaptive coherence estimator (ACE) is known to be the generalized likelihood ratio test (GLRT) in partially homogeneous environments, i.e., when the covariance matrix Ms of the secondary data is proportional to the covariance matrix Mp of the vector under test (or Ms = gamma/Mp). In this letter, we show that ACE is indeed the GLRT for a broader class of nonhomogeneous environments, more precisely when Ms is a random matrix, with inverse complex Wishart prior distribution whose mean only is proportional to Mp. Furthermore, we prove that, for this class of heterogeneous environments, the ACE detector satisfies the constant false alarm rate (CFAR) property with respect to gamma and Mp

### Parametric modeling of photometric signals

This paper studies a new model for photometric signals under high flux assumption. Photometric signals are modeled by Gaussian autoregressive processes having the same mean and variance denoted Constraint Gaussian Autoregressive Processes (CGARP's). The estimation of the CGARP parameters is discussed. The Cramér Rao lower bounds for these parameters are studied and compared to the estimator mean square errors. The CGARP is intended to model the signal received by a satellite designed for extrasolar planets detection. A transit of a planet in front of a star results in an abrupt change in the mean and variance of the CGARP. The Neyman–Pearson detector for this changepoint detection problem is derived when the abrupt change parameters are known. Closed form expressions for the Receiver Operating Characteristics (ROC) are provided. The Neyman–Pearson detector combined with the maximum likelihood estimator for CGARP parameters allows to study the generalized likelihood ratio detector. ROC curves are then determined using computer simulations

- …