161 research outputs found

    Infinite products involving binary digit sums

    Full text link
    Let (un)n≥0(u_n)_{n\ge 0} denote the Thue-Morse sequence with values ±1\pm 1. The Woods-Robbins identity below and several of its generalisations are well-known in the literature \begin{equation*}\label{WR}\prod_{n=0}^\infty\left(\frac{2n+1}{2n+2}\right)^{u_n}=\frac{1}{\sqrt 2}.\end{equation*} No other such product involving a rational function in nn and the sequence unu_n seems to be known in closed form. To understand these products in detail we study the function \begin{equation*}f(b,c)=\prod_{n=1}^\infty\left(\frac{n+b}{n+c}\right)^{u_n}.\end{equation*} We prove some analytical properties of ff. We also obtain some new identities similar to the Woods-Robbins product.Comment: Accepted in Proc. AMMCS 2017, updated according to the referees' comment
    • …
    corecore