117 research outputs found
Sequentiality and Adaptivity Gains in Active Hypothesis Testing
Consider a decision maker who is responsible to collect observations so as to
enhance his information in a speedy manner about an underlying phenomena of
interest. The policies under which the decision maker selects sensing actions
can be categorized based on the following two factors: i) sequential vs.
non-sequential; ii) adaptive vs. non-adaptive. Non-sequential policies collect
a fixed number of observation samples and make the final decision afterwards;
while under sequential policies, the sample size is not known initially and is
determined by the observation outcomes. Under adaptive policies, the decision
maker relies on the previous collected samples to select the next sensing
action; while under non-adaptive policies, the actions are selected independent
of the past observation outcomes.
In this paper, performance bounds are provided for the policies in each
category. Using these bounds, sequentiality gain and adaptivity gain, i.e., the
gains of sequential and adaptive selection of actions are characterized.Comment: 12 double-column pages, 1 figur
Active sequential hypothesis testing
Consider a decision maker who is responsible to dynamically collect
observations so as to enhance his information about an underlying phenomena of
interest in a speedy manner while accounting for the penalty of wrong
declaration. Due to the sequential nature of the problem, the decision maker
relies on his current information state to adaptively select the most
``informative'' sensing action among the available ones. In this paper, using
results in dynamic programming, lower bounds for the optimal total cost are
established. The lower bounds characterize the fundamental limits on the
maximum achievable information acquisition rate and the optimal reliability.
Moreover, upper bounds are obtained via an analysis of two heuristic policies
for dynamic selection of actions. It is shown that the first proposed heuristic
achieves asymptotic optimality, where the notion of asymptotic optimality, due
to Chernoff, implies that the relative difference between the total cost
achieved by the proposed policy and the optimal total cost approaches zero as
the penalty of wrong declaration (hence the number of collected samples)
increases. The second heuristic is shown to achieve asymptotic optimality only
in a limited setting such as the problem of a noisy dynamic search. However, by
considering the dependency on the number of hypotheses, under a technical
condition, this second heuristic is shown to achieve a nonzero information
acquisition rate, establishing a lower bound for the maximum achievable rate
and error exponent. In the case of a noisy dynamic search with size-independent
noise, the obtained nonzero rate and error exponent are shown to be maximum.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1144 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Adaptive Object Detection Using Adjacency and Zoom Prediction
State-of-the-art object detection systems rely on an accurate set of region
proposals. Several recent methods use a neural network architecture to
hypothesize promising object locations. While these approaches are
computationally efficient, they rely on fixed image regions as anchors for
predictions. In this paper we propose to use a search strategy that adaptively
directs computational resources to sub-regions likely to contain objects.
Compared to methods based on fixed anchor locations, our approach naturally
adapts to cases where object instances are sparse and small. Our approach is
comparable in terms of accuracy to the state-of-the-art Faster R-CNN approach
while using two orders of magnitude fewer anchors on average. Code is publicly
available.Comment: Accepted to CVPR 201
- …