3,397 research outputs found

    Modeling Routing Overhead Generated by Wireless Proactive Routing Protocols

    Full text link
    In this paper, we present a detailed framework consisting of modeling of routing overhead generated by three widely used proactive routing protocols; Destination-Sequenced Distance Vector (DSDV), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR). The questions like, how these protocols differ from each other on the basis of implementing different routing strategies, how neighbor estimation errors affect broadcast of route requests, how reduction of broadcast overhead achieves bandwidth, how to cope with the problem of mobility and density, etc, are attempted to respond. In all of the above mentioned situations, routing overhead and delay generated by the chosen protocols can exactly be calculated from our modeled equations. Finally, we analyze the performance of selected routing protocols using our proposed framework in NS-2 by considering different performance parameters; Route REQuest (RREQ) packet generation, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) with respect to varying rates of mobility and density of nodes in the underlying wireless network

    On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks

    Full text link
    In Wireless Multi-hop Networks (WMhNs), routing protocols with energy efficient and delay reduction techniques are needed to fulfill users demands. In this paper, we present Linear Programming models (LP_models) to assess and enhance reactive routing protocols. To practically examine constraints of respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It is deduced from analytical simulations of LP_models in MATLAB that quick route repair reduces routing latency and optimizations of retransmission attempts results efficient energy utilization. To provide quick repair, we enhance AODV and DSR. To practically examine the efficiency of enhanced protocols in different scenarios of WMhNs, we conduct simulations using NS- 2. From simulation results, enhanced DSR and AODV achieve efficient output by optimizing routing latencies and routing load in terms of retransmission attempts

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240

    What Support? Foucault, Power, and the Construction of Rape

    Get PDF
    This paper is concerned with the social and cultural constructions of male rape in voluntary agencies, England. Using sociological, cultural, and post-structural theoretical frameworks, mainly the works of Foucault, I demonstrate the ways in which male rape is constructed and reconstructed in such agencies. Social and power relations, social structures, and time and place shape their discourses, cultures, and constructions pertaining to male rape. This means that constructions of male rape are neither fixed, determined, nor unchanging at any time and place, but rather negotiated and fluid. I theorize the data—which was collected through semi-structured interviews and qualitative questionnaires—including male rape counselors, therapists, and voluntary agency caseworkers. The theoretical and conceptual underpinnings that frame and elucidate the data contribute to sociological understandings of male rape

    On using Multiple Quality Link Metrics with Destination Sequenced Distance Vector Protocol for Wireless Multi-Hop Networks

    Full text link
    In this paper, we compare and analyze performance of five quality link metrics forWireless Multi-hop Networks (WMhNs). The metrics are based on loss probability measurements; ETX, ETT, InvETX, ML and MD, in a distance vector routing protocol; DSDV. Among these selected metrics, we have implemented ML, MD, InvETX and ETT in DSDV which are previously implemented with different protocols; ML, MD, InvETX are implemented with OLSR, while ETT is implemented in MR-LQSR. For our comparison, we have selected Throughput, Normalized Routing Load (NRL) and End-to-End Delay (E2ED) as performance parameters. Finally, we deduce that InvETX due to low computational burden and link asymmetry measurement outperforms among all metrics
    corecore