26 research outputs found
Additional file 1 of Immune endotyping and gene expression profile of patients with chronic rhinosinusitis with nasal polyps in the aspirin-exacerbated respiratory disease (AERD) and the non-AERD subgroups
Supplementary Material
Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019 a systematic analysis for the Global Burden of Disease Study 2019
BackgroundPrevention, control, and treatment of respiratory tract cancers are important steps towards achieving target 3.4 of the UN Sustainable Development Goals (SDGs)-a one-third reduction in premature mortality due to non-communicable diseases by 2030. We aimed to provide global, regional, and national estimates of the burden of tracheal, bronchus, and lung cancer and larynx cancer and their attributable risks from 1990 to 2019.MethodsBased on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 methodology, we evaluated the incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) of respiratory tract cancers (ie, tracheal, bronchus, and lung cancer and larynx cancer). Deaths from tracheal, bronchus, and lung cancer and larynx cancer attributable to each risk factor were estimated on the basis of risk exposure, relative risks, and the theoretical minimum risk exposure level input from 204 countries and territories, stratified by sex and Socio-demographic Index (SDI). Trends were estimated from 1990 to 2019, with an emphasis on the 2010-19 period.FindingsGlobally, there were 2·26 million (95% uncertainty interval 2·07 to 2·45) new cases of tracheal, bronchus, and lung cancer, and 2·04 million (1·88 to 2·19) deaths and 45·9 million (42·3 to 49·3) DALYs due to tracheal, bronchus, and lung cancer in 2019. There were 209 000 (194 000 to 225 000) new cases of larynx cancer, and 123 000 (115 000 to 133 000) deaths and 3·26 million (3·03 to 3·51) DALYs due to larynx cancer globally in 2019. From 2010 to 2019, the number of new tracheal, bronchus, and lung cancer cases increased by 23·3% (12·9 to 33·6) globally and the number of larynx cancer cases increased by 24·7% (16·0 to 34·1) globally. Global age-standardised incidence rates of tracheal, bronchus, and lung cancer decreased by 7·4% (-16·8 to 1·6) and age-standardised incidence rates of larynx cancer decreased by 3·0% (-10·5 to 5·0) in males over the past decade; however, during the same period, age-standardised incidence rates in females increased by 0·9% (-8·2 to 10·2) for tracheal, bronchus, and lung cancer and decreased by 0·5% (-8·4 to 8·1) for larynx cancer. Furthermore, although age-standardised incidence and death rates declined in both sexes combined from 2010 to 2019 at the global level for tracheal, bronchus, lung and larynx cancers, some locations had rising rates, particularly those on the lower end of the SDI range. Smoking contributed to an estimated 64·2% (61·9-66·4) of all deaths from tracheal, bronchus, and lung cancer and 63·4% (56·3-69·3) of all deaths from larynx cancer in 2019. For males and for both sexes combined, smoking was the leading specific risk factor for age-standardised deaths from tracheal, bronchus, and lung cancer per 100 000 in all SDI quintiles and GBD regions in 2019. However, among females, household air pollution from solid fuels was the leading specific risk factor in the low SDI quintile and in three GBD regions (central, eastern, and western sub-Saharan Africa) in 2019.InterpretationThe numbers of incident cases and deaths from tracheal, bronchus, and lung cancer and larynx cancer increased globally during the past decade. Even more concerning, age-standardised incidence and death rates due to tracheal, bronchus, lung cancer and larynx cancer increased in some populations-namely, in the lower SDI quintiles and among females. Preventive measures such as smoking control interventions, air quality management programmes focused on major air pollution sources, and widespread access to clean energy should be prioritised in these settings
Additional file 1 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 1: Supplemental information.1. Compliance with the Guidlines for Accurate and Transparent Health Estimates Reporting (GATHER). 2. HIV data sources and data processing. 3. Covariate and auxiliary data. 4. Statistical model. 5. References
Additional file 4 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 4: Supplemental results.1. README. 2. Prevalence range across districts. 3. Prevalence range between sexes. 4. Prevalence range between ages. 5. Age-specific district ranges
Additional file 3 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 3: Supplemental figures.Figure S1. Prevalence of male circumcision. Figure S2. Prevalence of signs and symptoms of sexually transmitted infections. Figure S3. Prevalence of marriage or living as married. Figure S4. Prevalence of partner living elsewhere among females. Figure S5. Prevalence of condom use during most recent sexual encounter. Figure S6. Prevalence of sexual activity among young females. Figure S7. Prevalence of multiple partners among males in the past year. Figure S8. Prevalence of multiple partners among females in the past year. Figure S9. HIV prevalence predictions from the boosted regression tree model. Figure S10. HIV prevalence predictions from the generalized additive model. Figure S11. HIV prevalence predictions from the lasso regression model. Figure S12. Modeling regions. Figure S13. Age- and sex-specific vs. adult prevalence modeling. Figure S14. Data sensitivity. Figure S15. Model specification validation. Figure S16. Modeled and re-aggregated adult prevalence comparison. Figure S17. HIV prevalence raking factors for males. Figure S18. HIV prevalence raking factors for females. Figure S19. Age-specific HIV prevalence in males, 2000. Figure S20. Age-specific HIV prevalence in females, 2000. Figure S21. Age-specific HIV prevalence in males, 2005. Figure S22. Age-specific HIV prevalence in females, 2005. Figure S23. Age-specific HIV prevalence in males, 2010. Figure S24. Age-specific HIV prevalence in females, 2010. Figure S25. Age-specific HIV prevalence in males, 2018. Figure S26. Age-specific HIV prevalence in females, 2018. Figure S27. Age-specific uncertainty interval range estimates in males, 2000. Figure S28. Age-specific uncertainty interval range estimates in females, 2000. Figure S29. Age-specific uncertainty interval range estimates in males, 2005. Figure S30. Age-specific uncertainty interval range estimates in females, 2005. Figure S31. Age-specific uncertainty interval range estimates in males, 2010. Figure S32. Age-specific uncertainty interval range estimates in females, 2010. Figure S33. Age-specific uncertainty interval range estimates in males, 2018. Figure S34. Age-specific uncertainty interval range estimates in females, 2018. Figure S35. Change in HIV prevalence in males, 2000-2005. Figure S36. Change in HIV prevalence in females, 2000-2005. Figure S37. Change in HIV prevalence in males, 2005-2010. Figure S38. Change in HIV prevalence in females, 2005-2010. Figure S39. Change in HIV prevalence in males, 2010-2018. Figure S40. Change in HIV prevalence in females, 2010-2018. Figure S41. Space mesh for geostatistical models
Additional file 2 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 2: Supplemental tables.Table S1. HIV seroprevalence survey data. Table S2. ANC sentinel surveillance data. Table S3. HIV and covariates surveys excluded from this analysis. Table S4. Sources for pre-existing covariates. Table S5. HIV covariate survey data. Table S6. Fitted model parameters
Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems
Background: Human immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico. Methods: We performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017. Results: All countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries—apart from Ecuador—across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50% or more HIV deaths were concentrated in fewer than 10% of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups—the median age group among decedents ranged from 30 to 45 years of age at the municipality level in Brazil, Colombia, and Mexico in 2017. Conclusions: Our subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths.</p
The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 201
Subnational mapping of HIV incidence and mortality among individuals aged 15-49 years in sub-Saharan Africa, 2000-18: a modelling study
Background: High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods: In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15–49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000–18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings: The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second-level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2·8 (95% uncertainty interval 2·1–3·8) in Mauritania to 1585·9 (1369·4–1824·8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0·8 (0·7–0·9) in Mauritania to 676·5 (513·6–888·0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guijá District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661·7 [2544·8–8120·3]) cases per 100 000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163·0 [679·0–1866·8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81·1%] of 4087 units) and number of deaths (3325 [81·4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation: Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability. These estimates will help decision makers and programme implementers expand access to ART and better target health resources to higher burden subnational areas. </p
Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019
Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 201
