505 research outputs found
V-GRAM: Magellan bulletin about Venus and the radar mapping mission
Papers on the following topics are presented: Magellan project update; summary of Magellan science findings; excerpt from 'Acquisition and Analysis of Magellan Gravity Data'; Magellan gravity; and Magellan stereo image data
Coarse-grained description of thermo-capillary flow
A mesoscopic or coarse-grained approach is presented to study
thermo-capillary induced flows. An order parameter representation of a
two-phase binary fluid is used in which the interfacial region separating the
phases naturally occupies a transition zone of small width. The order parameter
satisfies the Cahn-Hilliard equation with advective transport. A modified
Navier-Stokes equation that incorporates an explicit coupling to the order
parameter field governs fluid flow. It reduces, in the limit of an infinitely
thin interface, to the Navier-Stokes equation within the bulk phases and to two
interfacial forces: a normal capillary force proportional to the surface
tension and the mean curvature of the surface, and a tangential force
proportional to the tangential derivative of the surface tension. The method is
illustrated in two cases: thermo-capillary migration of drops and phase
separation via spinodal decomposition, both in an externally imposed
temperature gradient.Comment: To appear in Phys. Fluids. Also at
http://www.scri.fsu.edu/~vinals/dj1.p
Non-equilibrium interface equations: An application to thermo-capillary motion in binary systems
Interface equations are derived for both binary diffusive and binary fluid
systems subjected to non-equilibrium conditions, starting from the
coarse-grained (mesoscopic) models. The equations are used to describe
thermo-capillary motion of a droplet in both purely diffusive and fluid cases,
and the results are compared with numerical simulations. A mesoscopic chemical
potential shift, owing to the temperature gradient, and associated mesoscopic
corrections involved in droplet motion are elucidated.Comment: 12 pages; Latex, revtex, ap
Entropically Driven Formation of Hierarchically Ordered Nanocomposites
Using theoretical models, we undertake the first investigation into the rich behavior that emerges when binary particle mixtures are blended with microphase-separating copolymers. We isolate an example of coupled self-assembly in such materials, where the system undergoes a nanoscale ordering of the particles along with a phase transformation in the copolymer matrix. Furthermore, the self-assembly is driven by entropic effects involving all the different components. The results reveal that entropy can be exploited to create highly ordered nanocomposites with potentially unique electronic and photonic properties. © 2002 The American Physical Society
- …