727 research outputs found

    Noisy Tensor Completion for Tensors with a Sparse Canonical Polyadic Factor

    Full text link
    In this paper we study the problem of noisy tensor completion for tensors that admit a canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition with one of the factors being sparse. We present general theoretical error bounds for an estimate obtained by using a complexity-regularized maximum likelihood principle and then instantiate these bounds for the case of additive white Gaussian noise. We also provide an ADMM-type algorithm for solving the complexity-regularized maximum likelihood problem and validate the theoretical finding via experiments on synthetic data set

    Compressive Measurement Designs for Estimating Structured Signals in Structured Clutter: A Bayesian Experimental Design Approach

    Full text link
    This work considers an estimation task in compressive sensing, where the goal is to estimate an unknown signal from compressive measurements that are corrupted by additive pre-measurement noise (interference, or clutter) as well as post-measurement noise, in the specific setting where some (perhaps limited) prior knowledge on the signal, interference, and noise is available. The specific aim here is to devise a strategy for incorporating this prior information into the design of an appropriate compressive measurement strategy. Here, the prior information is interpreted as statistics of a prior distribution on the relevant quantities, and an approach based on Bayesian Experimental Design is proposed. Experimental results on synthetic data demonstrate that the proposed approach outperforms traditional random compressive measurement designs, which are agnostic to the prior information, as well as several other knowledge-enhanced sensing matrix designs based on more heuristic notions.Comment: 5 pages, 4 figures. Accepted for publication at The Asilomar Conference on Signals, Systems, and Computers 201

    Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

    Full text link
    Adaptive sampling results in dramatic improvements in the recovery of sparse signals in white Gaussian noise. A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form of multi-stage experimental design and testing. Because of the adaptive nature of the data collection, DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any arbitrarily slowly growing function of the dimension.Comment: 23 pages, 2 figures. Revision includes minor clarifications, along with more illustrative experimental results (cf. Figure 2
    • …
    corecore