117 research outputs found
Raman amplification in plasma : thermal effects
The impact of thermal effects on Raman amplification in plasma is investigated theoretically. It is shown that damping and the shift in plasma resonance at finite temperature can alter the evolution of an amplified pulse. It is shown that pulse compression can occur which is not predicted by the cold plasma model. Although thermal effects can lead to a reduction in the efficiency of the interaction, this can be avoided by using a chirped pump. In this case these effects can be beneficial, suppressing the development of a train of pulses behind the amplified seed, as observed in the cold plasma model
Role of momentum and velocity for radiating electrons
Radiation reaction remains one of the most fascinating open questions in electrodynamics. The development of multi-petawatt laser facilities capable of reaching extreme intensities has leant this topic a new urgency, and it is now more important than ever to properly understand it. Two models of radiation reaction, due to Landau and Lifshitz and to Sokolov, have gained prominence, but there has been little work exploring the relation between the two. We show that in the Sokolov theory electromagnetic fields induce a Lorentz transformation between momentum and velocity, which eliminates some of the counterintuitive results of Landau-Lifshitz. In particular, the Lorentz boost in a constant electric field causes the particle to lose electrostatic potential energy more rapidly than it otherwise would, explaining the long-standing mystery of how an electron can radiate while experience no radiation reaction force. These ideas are illustrated in examples of relevance to astrophysics and laser-particle interactions, where radiation reaction effects are particularly prominent
On the energy-momentum tensor of light in strong fields : an all optical view of the Abraham-Minkowski controversy
The Abraham-Minkowski controversy is the debate surrounding the "correct" form of the energy-momentum tensor of light in a medium. Over a century of theoretical and experimental studies have consistently produced conflicting results, with no consensus being found on how best to describe the influence of a material on the propagation of light. It has been argued that the total energy-momentum tensor for each of the theories, which includes both wave and material components, are equal. The difficulty in separating the full energy-momentum tensor is generally attributed to the fact that one cannot obtain the energy-momentum tensor of the medium for real materials. Non-linear electrodynamics provides an opportunity to approach the debate from an all optical set up, where the role of the medium is replaced by the vacuum under the influence of a strong background field. We derive, from first principles, the general form of the energy-momentum tensor in such theories, and use our results to shed some light on this long standing issue
Electron and photon beams interacting with plasma
A comparison is made between the interaction of electron bunches and intense laser pulses with plasma. The laser pulse is modelled with photon kinetic theory, i.e. a representation of the electromagnetic field in terms of classical quasi-particles with space and wave number coordinates, which enables a direct comparison with the phase space evolution of the electron bunch. Analytical results are presented of the plasma waves excited by a propagating electron bunch or laser pulse, the motion of electrons or photons in these plasma waves and collective effects, which result from the self-consistent coupling of the particle and plasma wave dynamics
Electron beam cooling in intense focussed laser pulses
In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating
Coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator
Laser-wakefield accelerators generate femtosecond-duration electron bunches with energies from 10s of MeV to several GeV in millimetre distances by exploiting the large accelerating gradients created when a high-intensity laser pulse propagates in an underdense plasma. The process governing the formation of the accelerating structure ("bubble'') also causes the generation of sub-picosecond duration, 1-2~MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. We present simulations showing that these wide-angle beams can be used to produce coherent transition radiation in the 0.1-5 THz frequency range with 10s~J to mJ-level energy if passed through an inserted metal foil, or directly at the plasma-vacuum interface. We investigate how the properties of terahertz radiation change with foil size, position and orientation. The bunch length and size of wide-angle beams increase quickly as the electrons leave the accelerator, causing a shift of the radiation frequency peak from about 1 THz at a distance of 0.1~mm from the accelerator exit to 0.2 THz at 1~mm. If the foil size is reduced, for example to match the typical diameter of the plasma channel formed in a laser-wakefield accelerator, simulating the emission from the plasma-vacuum boundary, the low-frequency side of the spectrum is suppressed. The charge of wide-angle electron beams is expected to increase linearly with the laser intensity, with a corresponding quadratic increase of the terahertz radiation energy, potentially paving the way for mJ-level sources of coherent terahertz radiation
High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator
High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1-2~MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma-vacuum interface, showing that coherent terahertz radiation with 10s~J to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10^{-4}-10^{-3}
Focused beam dosimetry of short VHEE bunches
Accelerators driven by 10s TW-class lasers can produce electron bunches with femtosecond-scale duration and energy of 100s of MeV. A potential application of such short bunches is high-dose rate radiotherapy, which could transition to FLASH radiotherapy if a sufficiently large dose is delivered in a single shot. Here we present Monte Carlo simulations to study the bunch length evolution of an electron beam propagating in a water phantom. We show that for electron energies above 100 MeV the bunch lengthens to 1--10 ps duration after interaction with a 30 cm long water phantom, both for a collimated and weakly focused geometry. The corresponding dose rates are on the order of 200 Gy/s per primary electron, much higher than in conventional radiotherapy
Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides
Gas-filled capillary discharge waveguides are important structures in laser-plasma interaction applications, such as the laser wakefield accelerator. We present the methodology for applying femtosecond laser micromachining in the production of capillary channels (typically 200–300 μm in diameter and 30–40 mm in length), including the formalism for capillaries with a linearly tapered diameter. The latter is demonstrated to possess a smooth variation in diameter along the length of the capillary (tunable with the micromachining trajectories). This would lead to a longitudinal plasma density gradient in the waveguide that may dramatically improve the laser-plasma interaction efficiency in applications
- …