22,587 research outputs found

    Detection of a Spin Accumulation in Nondegenerate Semiconductors

    Get PDF
    Electrical detection of a spin accumulation in a nondegenerate semiconductor using a tunnel barrier and ferromagnetic contact is shown to be fundamentally affected by the energy barrier associated with the depletion region. This prevents the ferromagnet from probing the spin accumulation directly, strongly suppresses the magnetoresistance in current or potentiometric detection, and introduces nonmonotonic variation of spin signals with voltage and temperature. Having no analogue in metallic systems, we identify energy mismatch as an obstacle for spin detection, necessitating control of the energy landscape of spin-tunnel contacts to semiconductors

    The stack resource protocol based on real time transactions

    Get PDF
    Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular

    Kondo effect and impurity band conduction in Co:TiO2 magnetic semiconductor

    Get PDF
    The nature of charge carriers and their interaction with local magnetic moments in an oxide magnetic semiconductor is established. For cobalt-doped anatase TiO2 films, we demonstrate conduction in a metallic donor-impurity band. Moreover, we observe a clear signature of the Kondo effect in electrical transport data with remarkably high Kondo temperatures of up to 120 K. This indicates a strong coupling between local Co moments and delocalized electrons in the impurity band

    Impurity band conduction and AHE in anatase Co-doped TiO2 ferromagnetic semiconductor

    Get PDF

    The PHMC algorithm for simulations of dynamical fermions: II - Performance analysis

    Get PDF
    We compare the performance of the PHMC algorithm with the one of the HMC algorithm in practical simulations of lattice QCD. We show that the PHMC algorithm can lead to an acceleration of numerical simulations. It is demonstrated that the PHMC algorithm generates configurations carrying small isolated eigenvalues of the lattice Dirac operator and hence leads to a sampling of configuration space that is different from that of the HMC algorithm.Comment: Latex2e file, 6 figures, 31 page

    How the PHMC algorithm samples configuration space

    Get PDF
    We show that in practical simulations of lattice QCD with two dynamical light fermion species the PHMC algorithm samples configuration space differently from the commonly used HMC algorithm.Comment: 3 pages, 2 figures, LATTICE98 (Algorithms

    Sign of tunnel spin polarization of low-work-function Gd/Co nanolayers in a magnetic tunnel junction

    Get PDF
    Magnetic tunnel junctions having a low-work-function Gd/Co nanolayer at the interface with an Al2O3 tunnel barrier are shown to exhibit both positive and negative values of the tunnel magnetoresistance. The sign of the tunnel spin polarization of the Gd/Co nanolayer electrode depends on the thickness of the Gd and Co layers, temperature, and applied voltage. This reflects the nature of the interaction between the conduction electrons of the rare-earth and transition metals. \u

    Non-perturbative running of the average momentum of non-singlet parton densities

    Get PDF
    We determine non-perturbatively the anomalous dimensions of the second moment of non-singlet parton densities from a continuum extrapolation of results computed in quenched lattice simulations at different lattice spacings. We use a Schr\"odinger functional scheme for the definition of the renormalization constant of the relevant twist-2 operator. In the region of renormalized couplings explored, we obtain a good description of our data in terms of a three-loop expression for the anomalous dimensions. The calculation can be used for exploring values of the coupling where a perturbative expansion of the anomalous dimensions is not valid a priori. Moreover, our results provide the non-perturbative renormalization constant that connects hadron matrix elements on the lattice, renormalized at a low scale, with the experimental results, renormalized at much higher energy scales.Comment: Latex2e file, 6 figures, 25 pages, Corrected errors on linear fit in table 2 and discussion on anomalous dimension of f_

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201
    • …
    corecore