78 research outputs found

    Many-body effects in iron pnictides and chalcogenides -- non-local vs dynamic origin of effective masses

    Full text link
    We apply the quasi-particle self-consistent GW (QSGW) approximation to some of the iron pnictide and chalcogenide superconductors. We compute Fermi surfaces and density of states, and find excellent agreement with experiment, substantially improving over standard band-structure methods. Analyzing the QSGW self-energy we discuss non-local and dynamic contributions to effective masses. We present evidence that the two contributions are mostly separable, since the quasi-particle weight is found to be essentially independent of momentum. The main effect of non locality is captured by the static but non-local QSGW effective potential. Moreover, these non-local self-energy corrections, absent in e.g. dynamical mean field theory (DMFT), can be relatively large. We show, on the other hand, that QSGW only partially accounts for dynamic renormalizations at low energies. These findings suggest that QSGW combined with DMFT will capture most of the many-body physics in the iron pnictides and chalcogenides.Comment: 4+ pages, 3 figure

    Strain-induced tuning of the electronic Coulomb interaction in 3d transition metal oxide perovskites

    Full text link
    Epitaxial strain offers an effective route to tune the physical parameters in transition metal oxides. So far, most studies have focused on the effects of strain on the bandwidths and crystal field splitting, but recent experimental and theoretical works have shown that also the effective Coulomb interaction changes upon structural modifications. This effect is expected to be of paramount importance in current material engineering studies based on epitaxy-based material synthesization. Here, we perform constrained random phase approximation calculations for prototypical oxides with a different occupation of the d shell, LaTiO3 (d1), LaVO3 (d2), and LaCrO3 (d3), and systematically study the evolution of the effective Coulomb interactions (Hubbard U and Hund's J) when applying epitaxial strain. Surprisingly, we find that the response upon strain is strongly dependent on the material. For LaTiO3, the interaction parameters are determined by the degree of localization of the orbitals, and grow with increasing tensile strain. In contrast, LaCrO3 shows the opposite trends: the interactions parameters shrink upon tensile strain. This is caused by the enhanced screening due to the larger electron filling. LaVO3 shows an intermediate behavior

    Combined GW and dynamical mean field theory: Dynamical screening effects in transition metal oxides

    Full text link
    We present the first dynamical implementation of the combined GW and dynamical mean field scheme ("GW+DMFT") for first principles calculations of the electronic properties of correlated materials. The application to the ternary transition metal oxide SrVO3 demonstrates that this schemes inherits the virtues of its two parent theories: a good description of the local low energy correlation physics encoded in a renormalized quasi-particle band structure, spectral weight transfer to Hubbard bands, and the physics of screening driven by long-range Coulomb interactions. Our data is in good agreement with available photoemission and inverse photoemission spectra; our analysis leads to a reinterpretation of the commonly accepted "three-peak structure" as originating from orbital effects rather than from the electron addition peak within the t2g manifold.Comment: replaced with published version (6 pages, 3 figures); first version was submitted to PRL on June 19, 201
    • …
    corecore