38 research outputs found
Recommended from our members
Professional development needs in nutrition and dietetics
Background. Continuing education has long played a role in the maintenance of professional competence of nutrition and dietetics professionals. Due to the lack of published continuing education research in nutrition over the last 15 years, very little is known about the adequacy of continuing education resources for today’s nutrition and dietetics professionals. Objective. To examine the continuing education needs of nutrition and dietetics professionals. Design and Methods. A cross-sectional survey study of nutrition and dietetics professionals who graduated from the University of Texas at Austin Didactic Program in Dietetics and/or Coordinated Program in Dietetics. A survey was constructed and content-validated to assess continuing education needs in specific areas of nutrition. Descriptive statistics was used to report the results. Measures. Demographics, areas of focus in continuing education, continuing education activity preferences, targeted levels of competence in continuing education, and learning needs. Results. 54 surveys were returned. Of those 54, 41 were able to be used for analysis. Most of the participants worked in clinical nutrition (64.7%) and/or in nutrition education (38.2%). 75.6% of participants chose continuing education activities based on convenience and accessibility in their areas of interest. 63.4% of participants reported that their continuing education learning needs were not being met in at least one of their areas of focus in continuing education. Conclusion. Despite the emphasis on continuing education in the nutrition field, most of the participants reported unmet learning needs in some capacity. Further investigation into the adequacy of continuing education resources in nutrition is needed.Nutritional Science
Understanding complex relationships between human well-being and land use change in Mozambique using a multi-scale participatory scenario planning process
The path for bringing millions of people out of poverty in Africa is likely to coincide with important changes in land use and land cover (LULC). Envisioning the different possible pathways for agricultural, economic and social development, and their implications for changes in LULC, ecosystem services and society well-being, will improve policy-making. This paper presents a case that uses a multi-scale participatory scenario planning method to facilitate the understanding of the complex interactions between LULC change and the wellbeing of the rural population and their possible future evolution in Mozambique up to 2035. Key drivers of change were identified: the empowerment of civil society, the effective application of legislation and changes in rural technologies (e.g., information and communications technologies and renewable energy sources). Three scenarios were constructed: one characterized by the government promoting large investments; a second scenario characterized by the increase in local community power and public policies to promote small and medium enterprises; and a third, intermediate scenario. All three scenarios highlight qualitative large LULC changes, either driven by large companies or by small and medium scale farmers. The scenarios have different impact in wellbeing and equity, the first one implying a higher rural to urban area migration. The results also show that the effective application of the law can produce different results, from assuring large international investments to assuring the improvement of social services like education, health care and extension services. Successful application of these policies, both for biodiversity and ecosystem services protection, and for the social services needed to improve the well-being of the Mozambican rural population, will have to overcome significant barriers
Genetic identification of a common collagen disease in Puerto Ricans via identity-by-descent mapping in a health system
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease
Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort
© 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages
Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel
Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records
BACKGROUND:
Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework.
METHODS:
In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status.
FINDINGS:
Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1.
INTERPRETATION:
Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources.
FUNDING:
British Heart Foundation Data Science Centre, led by Health Data Research UK
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder