6,725 research outputs found
Conflict of Laws (2017)
States’ and nations’ laws collide when foreign factors appear in a lawsuit. Nonresident litigants, incidents outside the forum, and judgments from other jurisdictions can create problems with personal jurisdiction, choice of law, and the recognition of foreign judgments. This article reviews Texas conflict cases from Texas state and federal courts during the Survey period from December 1, 2015, through November 30, 2016. The article excludes cases involving federal–state conflicts; intrastate issues, such as subject matter jurisdiction and venue; and conflicts in time, such as the applicability of prior or subsequent law within a state. State and federal cases are discussed together because conflict of laws is mostly a state-law topic, except for a few constitutional limits, resulting in the same rules applying to most issues in state and federal courts.
Although no data are readily available to confirm this, Texas is no doubt a primary state in the production of conflict-of-laws precedents. This results not only from its size and population, but also from its placement bordering four states and a civil-law nation, and its significant international trade volume. Texas state and federal courts provide a fascinating study of conflicts issues every year, but the volume of case law now greatly exceeds this Survey’s ability to report on them, a function both of journal space and authors’ time. In addition, the current Survey covers one year and will accordingly limit its review to a few highlight cases and an examination of a couple of trends
P18. Backstroke Start Performance: The Impact of Using the Omega Backstroke Ledge
Background: FINA recently approved use of the “backstroke ledge” (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare starts performed on a flat wall to those performed with the OBL2, and to identify factors that contribute to better start performance. Methods: Ten elite backstroke swimmers performed three flat-wall and three OBL2 starts. Horizontal impulse, vertical impulse, takeoff velocity and takeoff angle were calculated from the force plate data. Entry distance, time to 10 m and start of hip and knee extension were recorded using digital video cameras. Results: We determined that starts performed with the OBL2 had a faster time to 10 m, less variability in vertical impulse and greater entry distance. Time to 10 m and head entry distance had a significant negative correlation. Starts with the OBL2 also had a trend toward lower resultant takeoff velocity, lower horizontal impulse and greater COM takeoff angle. Discussion and Conclusions: The OBL2 appears to provide a performance advantage by allowing an increased head entry distance, rather than larger impulse on the wall. Additional studies are needed to evaluate the factors that contribute to improved performance when using the OBL2. Coaches may consider head entry distance as a training target. Athletes should use the OBL2 in training and competition to ensure optimal start performance. Interdisciplinary Reflection: Concepts from physical and biological sciences are combined to explain the factors which affect backstroke start performance
Dynamic plantar loading index detects altered foot function in individuals with rheumatoid arthritis but not changes due to orthotic use
Background Altered foot function is common in individuals with rheumatoid arthritis. Plantar pressure distributions during gait are regularly assessed in this patient group; however, the association between frequently reported magnitude-based pressure variables and clinical outcomes has not been clearly established. Recently, a novel approach to the analysis of plantar pressure distributions throughout stance phase, the dynamic plantar loading index, has been proposed. This study aimed to assess the utility of this index for measuring foot function in individuals with rheumatoid arthritis.Methods Barefoot plantar pressures during gait were measured in 63 patients with rheumatoid arthritis and 51 matched controls. Additionally, 15 individuals with rheumatoid arthritis had in-shoe plantar pressures measured whilst walking in standardized footwear for two conditions: shoes-only; and shoes with prescribed custom foot orthoses. The dynamic plantar loading index was determined for all participants and conditions. Patient and control groups were compared for significant differences as were the shod and orthosis conditions.Findings The patient group was found to have a mean index of 0.19, significantly lower than the control group's index of 0.32 (p > 0.001, 95% CI [0.054, 0.197]). No significant differences were found between the shoe-only and shoe plus orthosis conditions. The loading index was found to correlate with clinical measures of structural deformity.Interpretation The dynamic plantar loading index may be a useful tool for researchers and clinicians looking to objectively assess dynamic foot function in patients with rheumatoid arthritis; however, it may be unresponsive to changes caused by orthotic interventions in this patient group.</p
A colorimetric CMOS-based platform for rapid total serum cholesterol quantification
Elevated cholesterol levels are associated with a greater risk of developing cardiovascular disease and other illnesses, making it a prime candidate for detection on a disposable biosensor for rapid point of care diagnostics. One of the methods to quantify cholesterol levels in human blood serum uses an optically mediated enzyme assay and a bench top spectrophotometer. The bulkiness and power hungry nature of the equipment limits its usage to laboratories. Here, we present a new disposable sensing platform that is based on a complementary metal oxide semiconductor process for total cholesterol quantification in pure blood serum. The platform that we implemented comprises readily mass-manufacturable components that exploit colorimetric changes of cholesterol oxidase and cholesterol esterase reactions. We have shown that our quantification results are comparable to that obtained by a bench top spectrophotometer. Using the implemented device, we have measured cholesterol concentration in human blood serum as low as 29 μM with a limit of detection at 13 μM, which is approximately 400 times lower than average physiological range, implying that our device also has the potential to be used for applications that require greater sensitivity
Drug administration errors by South African anaesthetists - a survey
Objectives. To investigate the incidence, nature of and factors contributing towards wrong drug administrations by South African anaesthetists. Design. A confidential, self-reporting survey was sent out to the 720 anaesthetists on the database of the South African Society of Anaesthesiologists. Results. A total of 133 questionnaires were returned for analysis (18.5% response rate). Of the respondents, 125 (94%) admitted to having inadvertently administered a wrong drug. Thirty respondents (22.6%) said they had made errors on at least four occasions. A total of 303 specific wrong drug administrations were described. Nearly 50% involved muscle relaxants. A further 43 incidents (14%) involved the erroneous administration of vasoactive drugs. Five deaths and 3 nonfatal cardiac arrests were reported. In 9.9% of incidents the anaesthetic time was prolonged by more than 30 minutes. Contributory causes identified included syringe swaps (40%), misidentification of drugs (27.1%), fatigue (14.1%), distractions (4.7%), and mislabelling of syringes (4.7%). Only 19% of respondents regularly use colour-coded syringe labels complying with the national standard. Conclusions. Most anaesthetists experienced at least one drug error. The incidence of wrong drug administrations by South African anaesthetists appears to be similar to that in Australasia and Canada. The commonest error was a ‘syringe swap’ involving muscle relaxants. Most drug errors are inconsequential. An important minority of incidents result in severe morbidity or death. The study supports efforts to improve ampoule labelling, to encourage the use of syringe labels based on the international colour code and to develop a national reporting system for such incidents
Identification of the sex pheromone of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from Asunción, Paraguay
The sand fly Lutzomyia longipalpis is the main vector of Leishmania (L.) infantum (Nicolle), the causative agent of American visceral leishmaniasis (AVL) in the New World. Male Lu. longipalpis have secretory glands which produce sex pheromones in either abdominal tergites 4 or 3 and 4. These glands are sites of sex pheromone production and each pheromone type may represent true sibling species. In Latin America, apart from Lu. pseudolongipalpis Arrivillaga and Feliciangeli from Venezuela, populations of Lu. longipalpis s.l. can be identified by their male-produced sex pheromones: (S)-9-methylgermacrene-B, 3-methyl-α-himachalene and the two cembrenes, 1 and 2
An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification
We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 216 sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2 – 12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM – 231 mM, encompassing glucose’s physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine
Workshop on Mars Sample Return Science
Martian magnetic history; quarantine issues; surface modifying processes; climate and atmosphere; sampling sites and strategies; and life sciences were among the topics discussed
Compensation effects in GaN:Mg probed by Raman spectroscopy and photoluminescence measurements
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Appl. Phys. 113, 103504 (2013) and may be found at https://doi.org/10.1063/1.4794094.Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compensation effects in GaN:Mg leading to the conclusion that compensation due to defect incorporation triggered by Mg-doping already affects the crystal properties at doping levels of around 7 × 1018 cm−3. Thereby, the generation of nitrogen vacancies is introduced as the driving force for the change of the strain state and the near band edge luminescence.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
- …