59 research outputs found

    The Entity-Deduction Arena: A playground for probing the conversational reasoning and planning capabilities of LLMs

    Full text link
    Large language models (LLMs) are effective at answering questions that are clearly asked. However, when faced with ambiguous queries they can act unpredictably and produce incorrect outputs. This underscores the need for the development of intelligent agents capable of asking clarification questions to resolve ambiguities effectively. This capability requires complex understanding, state tracking, reasoning and planning over multiple conversational turns. However, directly measuring this can be challenging. In this paper, we offer a surrogate problem which assesses an LLMs's capability to deduce an entity unknown to itself, but revealed to a judge, by asking the judge a series of queries. This entity-deducing game can serve as an evaluation framework to probe the conversational reasoning and planning capabilities of language models. We systematically evaluate various LLMs and discover significant differences in their performance on this task. We find that strong LLMs like GPT-4 outperform human players by a large margin. We further employ Behavior Cloning (BC) to examine whether a weaker model is capable of imitating a stronger model and generalizing to data or domains, using only the demonstrations from a stronger model. We finally propose to use Reinforcement Learning to enhance reasoning and planning capacity of Vicuna models through episodes of game playing, which lead to significant performance improvement. We hope that this problem offers insights into how autonomous agents could be trained to behave more intelligently in ambiguous circumstances.Comment: 22 page

    More Speaking or More Speakers?

    Full text link
    Self-training (ST) and self-supervised learning (SSL) methods have demonstrated strong improvements in automatic speech recognition (ASR). In spite of these advances, to the best of our knowledge, there is no analysis of how the composition of the labelled and unlabelled datasets used in these methods affects the results. In this work we aim to analyse the effect of numbers of speakers in the training data on a recent SSL algorithm (wav2vec 2.0), and a recent ST algorithm (slimIPL). We perform a systematic analysis on both labeled and unlabeled data by varying the number of speakers while keeping the number of hours fixed and vice versa. Our findings suggest that SSL requires a large amount of unlabeled data to produce high accuracy results, while ST requires a sufficient number of speakers in the labelled data, especially in the low-regime setting. In this manner these two approaches improve supervised learning in different regimes of dataset composition

    Learning Hard Alignments with Variational Inference

    Full text link
    There has recently been significant interest in hard attention models for tasks such as object recognition, visual captioning and speech recognition. Hard attention can offer benefits over soft attention such as decreased computational cost, but training hard attention models can be difficult because of the discrete latent variables they introduce. Previous work used REINFORCE and Q-learning to approach these issues, but those methods can provide high-variance gradient estimates and be slow to train. In this paper, we tackle the problem of learning hard attention for a sequential task using variational inference methods, specifically the recently introduced VIMCO and NVIL. Furthermore, we propose a novel baseline that adapts VIMCO to this setting. We demonstrate our method on a phoneme recognition task in clean and noisy environments and show that our method outperforms REINFORCE, with the difference being greater for a more complicated task
    • …
    corecore