6,769 research outputs found
Nonlinear deterministic equations in biological evolution
We review models of biological evolution in which the population frequency
changes deterministically with time. If the population is self-replicating,
although the equations for simple prototypes can be linearised, nonlinear
equations arise in many complex situations. For sexual populations, even in the
simplest setting, the equations are necessarily nonlinear due to the mixing of
the parental genetic material. The solutions of such nonlinear equations
display interesting features such as multiple equilibria and phase transitions.
We mainly discuss those models for which an analytical understanding of such
nonlinear equations is available.Comment: Invited review for J. Nonlin. Math. Phy
Numerical Modeling of Fluid Flow in Solid Tumors
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges
Exact solution for mean energy of 2d Dyson gas at beta = 1
Mean Coulomb energy of 2d Dyson gas in quadratic potential is examined from
combinatorial viewpoint. For beta = 1, we find a recursive relation on mean
energy and obtain its exact (finite N) solution in closed form in terms of the
hypergeometric function 3F2. Using this exact solution, we derive the large-N
asymptotic expansion of mean energy and show, that this expansion contains
half-integer powers of N.Comment: 10 pages, 1 figur
Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)
The Schrdinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics
In this paper it is argued how the dynamics of the classical Newtonian N-body
system can be described in terms of the Schrdinger-Poisson equations
in the large limit. This result is based on the stochastic quantization
introduced by Nelson, and on the Calogero conjecture. According to the Calogero
conjecture, the emerging effective Planck constant is computed in terms of the
parameters of the N-body system as , where is the gravitational constant, and are the
number and the mass of the bodies, and is their average density. The
relevance of this result in the context of large scale structure formation is
discussed. In particular, this finding gives a further argument in support of
the validity of the Schrdinger method as numerical double of the
N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.
Nonequilibrium phenomena in high Landau levels
Developments in the physics of 2D electron systems during the last decade
have revealed a new class of nonequilibrium phenomena in the presence of a
moderately strong magnetic field. The hallmark of these phenomena is
magnetoresistance oscillations generated by the external forces that drive the
electron system out of equilibrium. The rich set of dramatic phenomena of this
kind, discovered in high mobility semiconductor nanostructures, includes, in
particular, microwave radiation-induced resistance oscillations and
zero-resistance states, as well as Hall field-induced resistance oscillations
and associated zero-differential resistance states. We review the experimental
manifestations of these phenomena and the unified theoretical framework for
describing them in terms of a quantum kinetic equation. The survey contains
also a thorough discussion of the magnetotransport properties of 2D electrons
in the linear response regime, as well as an outlook on future directions,
including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure
Equilibrium analysis in multi-echelon supply chain with multi-dimensional utilities of inertial players
In a supply chain, the importance of information elicitation from the supply chain players is vital to design supply chain network. The rationality and self-centredness of these players causes the information asymmetry in the supply chain and thus situation of conflict and non-participation of the players in the network design process. In such situations, it is required to analyse the supply chain players’ behaviour in order to explore potential for coordination through incentives. In this paper, a novel approach of social utility analysis is proposed to elicit the information for supply chain coordination among the supply chain players in a dyadic relationship – supplier and buyer. In principal, we consider a monopsony situation where buyer is a dominant player. With the objective of maximizing the social utility, efforts have been made to value behavioural issues in supply chain. On the other hand, the reluctance of player due to the information asymmetry is measured in the form of inertia – an offset to the supply chain profit. The suppliers’ behaviour is analysed with three distinct level of risk for two types of the product in procurement process. The useful insight from this paper is in supplier selection process where the reluctance of supplier offsets supply chain profit. The paper provides recommendations to supply chain managers for efficient decision-making ability in supplier selection process
PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis
The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al
User Recognition Based on Daily Actigraphy Patterns
The use of inertial sensors such as accelerometers and gyroscopes, which are now often embedded in many wearable devices, has gained attention for their applicability in user authentication applications as an alternative to PINs, passwords, biometric signatures, etc. Previous works have shown that it is possible to authenticate users based on fine-grained kinematic behavior profiles like gait, hand gestures and physical activities. In this work we explore the use of actigraphy data for user recognition based on daily patterns as opposed to fine-grained motion. One of the advantages of the former, is that it does not require to perform specific movements, thus, easing the training and calibration stages. In this work we extracted daily patterns from an actigraphy device and used a random forest classifier and a majority voting approach to perform the user classification. We used a public available dataset collected by 55 participants and we achived a true positive rate of 0.64, a true negative rate of 0.99 and a balanced accuracy of 0.81.acceptedVersio
- …