4 research outputs found
Analytic generalized description of a perturbative nonparaxial elegant Laguerre-Gaussian phasor for ultrashort pulses in the time domain
An analytic expression for a polychromatic phasor representing an arbitrarily short elegant Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as a nonrecursive, closed-form perturbative expansion valid to any order of perturbative correction. This phasor enables the calculation of the complex electromagnetic fields for such beams without requiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical or numerical applications involving eLG pulses
Recommended from our members
Systems profiling reveals recurrently dysregulated cytokine signaling responses in ER+ breast cancer patients’ blood
Cytokines operate in concert to maintain immune homeostasis and coordinate immune responses. In cases of ER+ breast cancer, peripheral immune cells exhibit altered responses to several cytokines, and these alterations are correlated strongly with patient outcomes. To develop a systems-level understanding of this dysregulation, we measured a panel of cytokine responses and receptor abundances in the peripheral blood of healthy controls and ER+ breast cancer patients across immune cell types. Using tensor factorization to model this multidimensional data, we found that breast cancer patients exhibited widespread alterations in response, including drastically reduced response to IL-10 and heightened basal levels of pSmad2/3 and pSTAT4. ER+ patients also featured upregulation of PD-L1, IL6Rα, and IL2Rα, among other receptors. Despite this, alterations in response to cytokines were not explained by changes in receptor abundances. Thus, tensor factorization helped to reveal a coordinated reprogramming of the immune system that was consistent across our cohort
Foods advertised in US weekly supermarket sales circulars over one year: a content analysis
BACKGROUND: The nutritional content of Americans’ shopping carts is suboptimal despite federal dietary guidance, in this case, the MyPlate consumer icon which displays desired proportions of vegetables, fruits, dairy, grains and protein foods for consumption. Consumers mention print advertising—such as weekly sales circulars—frequently as influencing their grocery shopping decisions. METHODS: To examine and describe the relative proportions of advertised foods aggregated into the MyPlate food grouping system, a content analysis of 9 209 foods advertised in 52 weekly supermarket newspaper sales inserts in 2009 from a local grocery chain was conducted in a Midwestern community. RESULTS: Overall, the protein foods group was most often represented in sales circulars (25% of total items), followed by grains (18%); dairy (10%); vegetables (8%) and fruits (7%). Less than 3% of sales advertisements were for dark green and red & orange vegetables. Over twice as much whole fruit versus 100% fruit juice was advertised (70% vs. 30%, respectively; P < 0.001). Significantly fewer protein foods and more grains than expected were advertised in the fall, and slightly more dark green vegetables were advertised in winter and spring than in summer and fall (P = 0.05). CONCLUSIONS: The average American diet, including underconsumption of fruits and vegetables but overconsumption of protein foods, was reflected in the relative frequency of food groups advertised in weekly sales circulars. Modifying sales circulars to represent healthier food groups may preserve retail profits (considering these groups’ higher profit margin) while promoting adherence to federal dietary guidance
Analytic generalized description of a perturbative nonparaxial elegant Laguerre-Gaussian phasor for ultrashort pulses in the time domain
An analytic expression for a polychromatic phasor representing an arbitrarily short elegant Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as a nonrecursive, closed-form perturbative expansion valid to any order of perturbative correction. This phasor enables the calculation of the complex electromagnetic fields for such beams without requiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical or numerical applications involving eLG pulses