5,332 research outputs found

    The Octonions

    Get PDF
    The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics. Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also touch upon their applications in quantum logic, special relativity and supersymmetry.Comment: 56 pages LaTeX, 11 Postscript Figures, some small correction

    Collapse transition of a square-lattice polymer with next nearest-neighbor interaction

    Full text link
    We study the collapse transition of a polymer on a square lattice with both nearest-neighbor and next nearest-neighbor interactions, by calculating the exact partition function zeros up to chain length 36. The transition behavior is much more pronounced than that of the model with nearest-neighbor interactions only. The crossover exponent and the transition temperature are estimated from the scaling behavior of the first zeros with increasing chain length. The results suggest that the model is of the same universality class as the usual theta point described by the model with only nearest-neighbor interaction.Comment: 14 pages, 5 figure

    Effects of emotional labor on musculoskeletal disorders among physical therapists in Seoul

    Get PDF
    Introduction: Health care workers, including physical therapists, have some of the most important roles in the health care system as shown during the COVID-19 pandemic. Physical therapists encounter emotionally and physically vulnerable patients, experience emotional labor, and are exposed to conditions that can lead to job stress and musculoskeletal disorders. We aimed to examine the relationship between physical therapists’ emotional labor and its effect on perceived job stress and risk of musculoskeletal disorders. Methods: We conducted a 30-day survey among 230 physical therapists working in various settings from October 2 to November 1, 2019. Questionnaires, including questions on musculoskeletal symptoms, perceived job stress, and emotional labor, were administered to the participants. Results: The physical therapist's surface behavior affected the body burden. Job burnout experienced by physical therapists had an effect on their interpersonal relationships. The physical therapist's emotional law affects the degree of compensation. Conclusion: To prevent the long-term consequences of work-related strain, physical therapists should receive support in terms of maintaining a healthy lifestyle and developing effective methods of communication with patients. Encouragement of activities for psychological rejuvenation with colleagues with whom they can share emotional difficulties is also desirable. It is also necessary to establish a communication channel that can directly convey the grievances of physical therapists to hospitals

    Trap-Based Pest Counting: Multiscale and Deformable Attention CenterNet Integrating Internal LR and HR Joint Feature Learning

    Full text link
    Pest counting, which predicts the number of pests in the early stage, is very important because it enables rapid pest control, reduces damage to crops, and improves productivity. In recent years, light traps have been increasingly used to lure and photograph pests for pest counting. However, pest images have a wide range of variability in pest appearance owing to severe occlusion, wide pose variation, and even scale variation. This makes pest counting more challenging. To address these issues, this study proposes a new pest counting model referred to as multiscale and deformable attention CenterNet (Mada-CenterNet) for internal low-resolution (LR) and high-resolution (HR) joint feature learning. Compared with the conventional CenterNet, the proposed Mada-CenterNet adopts a multiscale heatmap generation approach in a two-step fashion to predict LR and HR heatmaps adaptively learned to scale variations, that is, changes in the number of pests. In addition, to overcome the pose and occlusion problems, a new between-hourglass skip connection based on deformable and multiscale attention is designed to ensure internal LR and HR joint feature learning and incorporate geometric deformation, thereby resulting in an improved pest counting accuracy. Through experiments, the proposed Mada-CenterNet is verified to generate the HR heatmap more accurately and improve pest counting accuracy owing to multiscale heatmap generation, joint internal feature learning, and deformable and multiscale attention. In addition, the proposed model is confirmed to be effective in overcoming severe occlusions and variations in pose and scale. The experimental results show that the proposed model outperforms state-of-the-art crowd counting and object detection models

    Common Grounds as Multiple Information States

    Get PDF

    DRUG DELIVERY MICRODEVICE: DESIGN, SIMULATION, AND EXPERIMENTS

    Get PDF
    Ocular diseases such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting millions of adults in US and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This research focused on an implantable ocular drug delivery device design, simulation and experiments with design requirements including constant diffusion rate, extended period of time operation, the smallest possible volume of device and reservoir. The drug delivery device concept uses micro-/nano-channels module embedded between top and bottom covers with a drug reservoir. Several microchannel design configurations were developed and simulated using commercial finite element software (ANSYS and COMSOL), with a goal to investigate how the microchannel dimensions affect the diffusion characteristics. In addition to design simulations, various microchannel configurations were fabricated on silicon wafer using photolithography techniques as well as 3D printing. Also, the top and bottom covers of the device were fabricated from PDMS through replica molding techniques. These fabricated microchannel design configurations along with top and bottom covers were all integrated into the device. Both single straight microchannels (nine different sizes of width and depth) as well as four micro-channel configurations were tested using citric acid (pH changes) and Brimonidine drug (concentration changes using the Ultra-Violet Visible Spectrophotometer) for their diffusion characteristics. Experiments were conducted to obtain the diffusion rates through various single micro-channels as well as micro-channel configurations using the change in pH neutral solution to verify the functionality and normalized diffusion rate of microchannels and configurations. The results of experimental data of diffusion rate were compared with those obtained from simulations, and a good agreement was found. The results showed the diffusion rate and the optimum size of microchannel in conjunction with the required drug release time. The results obtained also indicate that even though specific diffusion rates can be obtained but delivering the drug with constant amount needs a mechanism at the device outlet with some control mechanism. For future studies, this result may be used as a baseline for developing a microfabricated device that allows for accurate drug diffusion in many drug delivery applications
    • …
    corecore