1,792 research outputs found

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P ╬┤\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    Analysis of stratospheric ozone, temperature, and minor constituent data

    Get PDF
    The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature, potential vorticity space as developed by Schoeberl and coworkers

    islet Reveals Segmentation in the Amphioxus Hindbrain Homolog

    Get PDF
    AbstractThe vertebrate embryonic hindbrain is segmented into rhombomeres. Gene expression studies suggest that amphioxus, the closest invertebrate relative of vertebrates, has a hindbrain homolog. However, this region is not overtly segmented in amphioxus, raising the question of how hindbrain segmentation arose in chordate evolution. Vertebrate hindbrain segmentation includes the patterning of cranial motor neurons, which can be identified by their expression of the LIM-homeodomain transcription factor islet1. To learn if the amphioxus hindbrain homolog is cryptically segmented, we cloned an amphioxus gene closely related to islet1, which we named simply islet. We report that amphioxus islet expression includes a domain of segmentally arranged cells in the ventral hindbrain homolog. We hypothesize that these cells are developing motor neurons and reveal a form of hindbrain segmentation in amphioxus. Hence, vertebrate rhombomeres may derive from a cryptically segmented brain present in the amphioxus/vertebrate ancestor. Other islet expression domains provide evidence for amphioxus homologs of the pineal gland, adenohypophysis, and endocrine pancreas. Surprisingly, homologs of vertebrate islet1-expressing spinal motor neurons and Rohon-Beard sensory neurons appear to be absent

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Simulation of Long Lived Tracers Using an Improved Empirically Based Two-Dimensional Model Transport Algorithm

    Get PDF
    We have developed a new empirically-based transport algorithm for use in our GSFC two-dimensional transport and chemistry model. The new algorithm contains planetary wave statistics, and parameterizations to account for the effects due to gravity waves and equatorial Kelvin waves. As such, this scheme utilizes significantly more information compared to our previous algorithm which was based only on zonal mean temperatures and heating rates. The new model transport captures much of the qualitative structure and seasonal variability observed in long lived tracers, such as: isolation of the tropics and the southern hemisphere winter polar vortex; the well mixed surf-zone region of the winter sub-tropics and mid-latitudes; the latitudinal and seasonal variations of total ozone; and the seasonal variations of mesospheric H2O. The model also indicates a double peaked structure in methane associated with the semiannual oscillation in the tropical upper stratosphere. This feature is similar in phase but is significantly weaker in amplitude compared to the observations. The model simulations of carbon-14 and strontium-90 are in good agreement with observations, both in simulating the peak in mixing ratio at 20-25 km, and the decrease with altitude in mixing ratio above 25 km. We also find mostly good agreement between modeled and observed age of air determined from SF6 outside of the northern hemisphere polar vortex. However, observations inside the vortex reveal significantly older air compared to the model. This is consistent with the model deficiencies in simulating CH4 in the northern hemisphere winter high latitudes and illustrates the limitations of the current climatological zonal mean model formulation. The propagation of seasonal signals in water vapor and CO2 in the lower stratosphere showed general agreement in phase, and the model qualitatively captured the observed amplitude decrease in CO2 from the tropics to midlatitudes. However, the simulated seasonal amplitudes were attenuated too rapidly with altitude in the tropics. Overall, the simulations with the new transport formulation are in substantially better agreement with observations compared with our previous model transport

    CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Get PDF
    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendation

    Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm2^2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector

    Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    Get PDF
    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions
    • ÔÇŽ