177 research outputs found

    PR-Set7 is Degraded in a Conditional Cul4A Transgenic Mouse Model of Lung Cancer.

    Get PDF
    BackgroundMaintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage.MethodsWe developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of Îł-tubulin and pericentrin by IHC.ResultsThe level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and Îł-tubulin in Cul4A mouse lungs induced by AdenoCre.ConclusionsPR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model

    Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas.

    Get PDF
    Malignant pleural mesothelioma (MPM), a rare malignancy with a poor prognosis, is mainly caused by exposure to asbestos or other organic fibers, but the underlying genetic mechanism is not fully understood. Genetic alterations and causes for multiple primary cancer development including MPM are unknown. We used whole exome sequencing to identify somatic mutations in a patient with MPM and two additional primary cancers who had no evidence of venous, arterial, lymphovascular, or perineural invasion indicating dissemination of a primary lung cancer to the pleura. We found that the MPM had R282W, a key TP53 mutation, and genome-wide allelic loss or loss of heterozygosity, a distinct genomic alteration not previously described in MPM. We identified frequent inactivating SETDB1 mutations in this patient and in 68 additional MPM patients (mutation frequency: 10%, 7/69) by targeted deep sequencing. Our observations suggest the possibility of a new genetic mechanism in the development of either MPM or multiple primary cancers. The frequent SETDB1 inactivating mutations suggest there could be new diagnostic or therapeutic options for MPM

    Inhibition of yes-associated protein suppresses brain metastasis of human lung adenocarcinoma in a murine model.

    Get PDF
    Yes-associated protein (YAP) is a main mediator of the Hippo pathway and promotes cancer development and progression in human lung cancer. We sought to determine whether inhibition of YAP suppresses metastasis of human lung adenocarcinoma in a murine model. We found that metastatic NSCLC cell lines H2030-BrM3(K-rasG12C mutation) and PC9-BrM3 (EGFRΔexon19 mutation) had a significantly decreased p-YAP(S127)/YAP ratio compared to parental H2030 (K-rasG12C mutation) and PC9 (EGFRΔexon19 mutation) cells (P < .05). H2030-BrM3 cells had significantly increased YAP mRNA and expression of Hippo downstream genes CTGF and CYR61 compared to parental H2030 cells (P < .05). Inhibition of YAP by short hairpin RNA (shRNA) and small interfering RNA (siRNA) significantly decreased mRNA expression in downstream genes CTGF and CYR61 in H2030-BrM3 cells (P < .05). In addition, inhibiting YAP by YAP shRNA significantly decreased migration and invasion abilities of H2030-BrM3 cells (P < .05). We are first to show that mice inoculated with YAP shRNA-transfected H2030-BrM3 cells had significantly decreased metastatic tumour burden and survived longer than control mice (P < .05). Collectively, our results suggest that YAP plays an important role in promoting lung adenocarcinoma brain metastasis and that direct inhibition of YAP by shRNA suppresses H2030-BrM3 cell brain metastasis in a murine model

    Epidemiology of Non-small Cell Lung Cancer in Asian Americans: Incidence Patterns Among Six Subgroups by Nativity

    Get PDF
    BackgroundDifferences in the epidemiology of lung cancer between Asians and non-Hispanic whites have brought to light the relative influences of genetic and environmental factors on lung cancer risk. We set out to describe the epidemiology of non-small cell lung cancer (NSCLC) among Asians living in California, and to explore the effects of acculturation on lung cancer risk by comparing lung cancer rates between U.S.-born and foreign-born Asians.MethodsAge-adjusted incidence rates of NSCLC were calculated for Chinese, Filipino, Japanese, Korean, Vietnamese, and South Asians in California between 1988 and 2003 using data from the California Cancer Registry. Incidence rates were calculated and stratified by sex and nativity. We analyzed population-based tobacco smoking prevalence data to determine whether differences in rates were associated with prevalence of tobacco smoking.ResultsAsians have overall lower incidence rates of NSCLC compared with whites (29.8 and 57.7 per 100,000, respectively). South Asians have markedly low rates of NSCLC (12.0 per 100,000). Foreign-born Asian men and women have an approximately 35% higher rate of NSCLC than U.S.-born Asian men and women. The incidence pattern by nativity is consistent with the population prevalence of smoking among Asian men; however, among women, the prevalence of smoking is higher among U.S.-born, which is counter to their incidence patterns.ConclusionsForeign-born Asians have a higher rate of NSCLC than U.S.-born Asians, which may be due to environmental tobacco smoke or nontobacco exposures among women. South Asians have a remarkably low rate of NSCLC that approaches white levels among the U.S.-born. More studies with individual-level survey data are needed to identify the specific environmental factors associated with differential lung cancer risk occurring with acculturation among Asians

    Inhibition of Hsp90 Leads to Cell Cycle Arrest and Apoptosis in Human Malignant Pleural Mesothelioma

    Get PDF
    IntroductionHeat shock protein 90 (Hsp90) is an abundant molecular chaperone that mediates the maturation and stability of a variety of proteins associated with the promotion of cell growth and survival. Inhibition of Hsp90 function leads to proteasomal degradation of its mis-folded client proteins. Recently, Hsp90 has emerged as being of prime importance to the growth and survival of cancer cells and its inhibitors have already been used in phase I and II clinical trials.MethodsWe investigated how 17-allylamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is implicated in human malignant pleural mesothelioma (MM).ResultsWe found that 17-AAG led to significant G1 or G2/M cell cycle arrest, inhibition of cell proliferation, and decrease of AKT, AKT1, and survivin expression in all human malignant pleural mesothelioma cell lines examined. We also observed significant apoptosis induction in all MM cell lines treated with 17-AAG. Furthermore, 17-AAG induced apoptosis in freshly cultured primary MM cells and caused signaling changes identical to those in 17-AAG treated MM cell lines.ConclusionThese results suggest that Hsp90 is strongly associated with the growth and survival of MM and that inhibition of Hsp90 may have therapeutic potential in the treatment of MM

    Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer

    Get PDF
    BackgroundE2A-PBX1 fusion gene caused by t(1;19)(q23;p13), has been well characterized in acute lymphoid leukemia (ALL). There is no report on E2A-PBX1 fusion transcripts in non-small-cell lung cancer (NSCLC).MethodsWe used polymerase chain reaction (PCR) to detect E2A-PBX1 fusion transcripts in human NSCLC tissue specimens and cell lines. We analyzed correlation of E2A-PBX1 fusion transcripts with clinical outcomes in 76 patients with adenocarcinoma in situ (AIS) and other subgroups. We compared mutation status of k-ras, p53 and EGFR in 22 patients with E2A-PBX1 fusion transcripts.ResultsWe detected E2A-PBX1 transcripts in 23 of 184 (12.5%) NSCLC tissue specimens and 3 of 13 (23.1%) NSCLC cell lines. Presence of E2A-PBX1 fusion transcripts correlated with smoking status in female patients (P=0.048), AIS histology (P=0.006) and tumor size (P=0.026). The overall survival was associated with gender among AIS patients (P=0.0378) and AIS patients without E2A-PBX1 fusion transcripts (P=0.0345), but not among AIS patients with E2A-PBX1 fusion transcripts (P=0.6401). The overall survival was also associated with status of E2A-PBX1 fusion transcripts among AIS stage IA patients (P=0.0363) and AIS stage IA female patients (P=0.0174). In addition, among the 22 patients with E2A-PBX1 fusion transcripts, 12 (54.5%) patients including all four non-smokers, showed no common mutations in k-ras, p53 and EGFR.ConclusionsE2A-PBX1 fusion gene caused by t(1;19)(q23;p13) may be a common genetic change in AIS and a survival determinant for female AIS patients at early stage

    Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library.</p> <p>Methods</p> <p>We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors <it>in vitro </it>was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays.</p> <p>Results</p> <p>Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC<sub>50 </sub>value of 0.55 ÎĽM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells.</p> <p>Conclusion</p> <p>In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors.</p
    • …
    corecore