20,097 research outputs found
Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels
The relationship between receptor-induced membrane phosphatidylinositol-4'5'-bisphosphate (PIP2) hydrolysis and M-current inhibition was assessed in single-dissociated rat sympathetic neurons by simultaneous or parallel recording of membrane current and membrane-to-cytosol translocation of the fluorescent PIP2/inositol 1,4,5-trisphosphate (IP3)-binding peptide green fluorescent protein-tagged pleckstrin homology domain of phospholipase C (GFP-PLC delta-PH). The muscarinic receptor agonist oxotremorine-M produced parallel time- and concentration-dependent M-current inhibition and GFP-PLC delta-PH translocation; bradykinin also produced parallel time- dependent inhibition and translocation. Phosphatidylinositol-4-phosphate-5-kinase (PI5-K) overexpression reduced both M-current inhibition and GFP-PLC delta-PH translocation by both oxotremorine-M and bradykinin. These effects were partly reversed by wortmannin, which inhibits phosphatidylinositol-4-kinase (PI4-K). PI5-K overexpression also reduced the inhibitory action of oxotremorine-M on PIP2-gated G-protein-gated inward rectifier (Kir3.1/3.2) channels; bradykinin did not inhibit these channels. Overexpression of neuronal calcium sensor-1 protein (NCS-1), which increases PI4-K activity, did not affect responses to oxotremorine-M but reduced both fluorescence translocation and M-current inhibition by bradykinin. Using an intracellular IP3 membrane fluorescence-displacement assay, initial mean concentrations of membrane [PIP2] were estimated at 261 mu M (95% confidence limit; 192-381 mu M), rising to 693 mu M (417-1153 mu M) in neurons overexpressing PI5-K. Changes in membrane [PIP2] during application of oxotremorine-M were calculated from fluorescence data. The results, taken in conjunction with previous data for KCNQ2/3 (Kv7.2/Kv7.3) channel gating by PIP2 (Zhang et al., 2003), accorded with the hypothesis that the inhibitory action of oxotremorine-M on M current resulted from depletion of PIP2. The effects of bradykinin require additional components of action, which might involve IP3-induced Ca2+ release and consequent M-channel inhibition (as proposed previously) and stimulation of PIP2 synthesis by Ca2+-dependent activation of NCS-1
Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: a prospective observational cohort study.
Exacerbations of non-cystic fibrosis bronchiectasis cause significant morbidity but there are few detailed data on their clinical course and associated physiological changes. The biology of an exacerbation has not been previously described
Cytomegalovirus pneumonitis complicated by a central peribronchial pattern of organising pneumonia
We present five cases of cytomegalovirus (CMV) pneumonitis occurring in patients after recent T cell deplete allogeneic stem cell transplantation (AlloHSCT). These cases were complicated by an organising pneumonia (during the recovery period) with a predominantly central peribronchial pattern. All patients presented with evidence of active CMV pneumonitis which was treated successfully with anti-viral therapy but was followed by persistent severe dyspnoea, cough and hypoxia. High resolution computed tomography (HRCT) imaging showed widespread central peribronchial consolidation with traction bronchiectasis. There was a marked clinical and physiological improvement after treatment with systemic corticosteroids. However, in all patients the lung function remained abnormal and in some cases imaging revealed a fibrosing lung disease. These cases represent a previously undescribed central peribronchial pattern of organising pneumonia complicating CMV pneumonitis that can result in chronic lung damage
Bacterial Infection Elicits Heat Shock Protein 72 Release from Pleural Mesothelial Cells
Heat shock protein 70 (HSP70) has been implicated in infection-related processes and has been found in body fluids during infection. This study aimed to determine whether pleural mesothelial cells release HSP70 in response to bacterial infection in vitro and in mouse models of serosal infection. In addition, the in vitro cytokine effects of the HSP70 isoform, Hsp72, on mesothelial cells were examined. Further, Hsp72 was measured in human pleural effusions and levels compared between non-infectious and infectious patients to determine the diagnostic accuracy of pleural fluid Hsp72 compared to traditional pleural fluid parameters. We showed that mesothelial release of Hsp72 was significantly raised when cells were treated with live and heat-killed Streptococcus pneumoniae. In mice, intraperitoneal injection of S. pneumoniae stimulated a 2-fold increase in Hsp72 levels in peritoneal lavage (p<0.01). Extracellular Hsp72 did not induce or inhibit mediator release from cultured mesothelial cells. Hsp72 levels were significantly higher in effusions of infectious origin compared to non-infectious effusions (p<0.05). The data establish that pleural mesothelial cells can release Hsp72 in response to bacterial infection and levels are raised in infectious pleural effusions. The biological role of HSP70 in pleural infection warrants exploration
Flux Discharge Cascades in Various Dimensions
We study the dynamics of electric flux discharge by charged particle pair or
spherical string or membrane production in various dimensions. When electric
flux wraps at least one compact cycle, we find that a single "pair" production
event can initiate a cascading decay in real time that "shorts out" the flux
and discharges many units of it. This process arises from local dynamics in the
compact space, and so is invisible in the dimensionally-reduced truncation. It
occurs in theories as simple as the Schwinger model on a circle, and has
implications for any theory with compact dimensions and electric flux,
including string theories and the string landscape.Comment: 19+8 pages, 3 figures, 3 appendice
Improving Pulmonary Immunity to Bacterial Pathogens Through Streptococcus pneumoniae Colonisation of the Nasopharynx
Streptococcus pneumoniae is a common cause of bacterial pneumonia especially in
the elderly or those with significant comorbidities, and is also frequently associated
with exacerbations of COPD (1, 2). Existing S. pneumoniae vaccines have partial
strain coverage, may lack efficacy in high risk groups, and generally seem to have
poorer efficacy against pulmonary compared to systemic infection (3,4). Hence
alternative strategies to conventional vaccines maybe required to prevent the
persisting high morbidity and mortality caused by S. pneumoniae lung infections
Single-Nucleotide Polymorphisms within the cps Loci: Another Potential Source of Clinically Important Genetic Variation for Streptococcus pneumoniae?
The Streptococcus pneumoniae capsule is essential for disease pathogenesis, suggesting that even minor genetic changes within the cps locus could potentially have important consequences. Arends et al. have identified 79 different non-synonymous SNPs in the cps locus of 338 19A serotype strains, and shown significant variations between strains in nucleotide sugars content and capsule shedding. Further work is required to characterise whether any of these changes have important functional consequences on capsule/host interactions
PCO4 EPISODES OF RESPIRATORY CARE FOR MANAGED CARE PATIENTS WITH COPD: ASSESSING THE ECONOMIC BURDEN
Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1Ξ², CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1Ξ², CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators
The ins and outs of participation in a weather information system
In this paper our aim is to show even though access to technology, information or data holds the potential for improved participation, participation is wired into a larger network of actors, artefacts and information practices. We draw on a case study of a weather information system developed and implemented by a non-profit organisation to both describe the configuration of participation, but also critically assess inclusion and exclusion. We present a set of four questions - a basic, practical toolkit - by which we together with the organisation made sense of and evaluated participation in the system
- β¦