6,299 research outputs found
Recommended from our members
The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond.
The field of dental materials has undergone more of a revolution than an evolution over the past 100 y. The development of new products, especially in the past half century, has occurred at a staggering pace, and their introduction to the market has been equally impressive. The movement has mostly come in the area of improved esthetics, marked by the gradual replacement of dental amalgam with dental composite and all-metal and porcelain-fused-to-metal indirect restorations with reinforced dental ceramics, all made possible by the rapid improvements in dental adhesive materials. This article covers the time course of dental materials development over the past century in which the Journal of Dental Research has been published. While there have been advances in nearly all materials used in the field, this article focuses on several areas, including dental amalgam, dental composites and light curing, dental adhesives and dental cements, ceramics, and new functional repair materials. A few short statements on future advances will be included at the end
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
Background: There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model.
Methods: Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer example. Multivariate missing data were imposed on four covariates using four different mechanisms; missing completely at random (MCAR), missing at random (MAR), missing not at random (MNAR) and a combination of all three mechanisms. Five amounts of incomplete cases from 5% to 75% were considered. Complete case analysis (CC), single imputation (SI) and five multiple imputation (MI) techniques available within the R statistical software were investigated: a) data augmentation (DA) approach assuming a multivariate normal distribution, b) DA assuming a general location model, c) regression switching imputation, d) regression switching with predictive mean matching (MICE-PMM) and e) flexible additive imputation models. A Cox proportional hazards model was fitted and appropriate estimates for the regression coefficients and model performance measures were obtained.
Results: Performing a CC analysis produced unbiased regression estimates, but inflated standard errors, which affected the significance of the covariates in the model with 25% or more missingness. Using SI, underestimated the variability; resulting in poor coverage even with 10% missingness. Of the MI approaches, applying MICE-PMM produced, in general, the least biased estimates and better coverage for the incomplete covariates and better model performance for all mechanisms. However, this MI approach still produced biased regression coefficient estimates for the incomplete skewed continuous covariates when 50% or more cases had missing data imposed with a MCAR, MAR or combined mechanism. When the missingness depended on the incomplete covariates, i.e. MNAR, estimates were biased with more than 10% incomplete cases for all MI approaches.
Conclusion: The results from this simulation study suggest that performing MICE-PMM may be the preferred MI approach provided that less than 50% of the cases have missing data and the missing data are not MNAR
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
Integrated photonic quantum gates for polarization qubits
Integrated photonic circuits have a strong potential to perform quantum
information processing. Indeed, the ability to manipulate quantum states of
light by integrated devices may open new perspectives both for fundamental
tests of quantum mechanics and for novel technological applications. However,
the technology for handling polarization encoded qubits, the most commonly
adopted approach, is still missing in quantum optical circuits. Here we
demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for
polarization encoded qubits. This result has been enabled by the integration,
based on femtosecond laser waveguide writing, of partially polarizing beam
splitters on a glass chip. We characterize the logical truth table of the
quantum gate demonstrating its high fidelity to the expected one. In addition,
we show the ability of this gate to transform separable states into entangled
ones and vice versa. Finally, the full accessibility of our device is exploited
to carry out a complete characterization of the CNOT gate through a quantum
process tomography.Comment: 6 pages, 4 figure
Frontotemporal Dementia: A Clinical Review.
Frontotemporal dementias are a clinically, neuroanatomically, and pathologically diverse group of diseases that collectively constitute an important cause of young-onset dementia. Clinically, frontotemporal dementias characteristically strike capacities that define us as individuals, presenting broadly as disorders of social behavior or language. Neurobiologically, these diseases can be regarded as "molecular nexopathies," a paradigm for selective targeting and destruction of brain networks by pathogenic proteins. Mutations in three major genes collectively account for a substantial proportion of behavioral presentations, with far-reaching implications for the lives of families but also potential opportunities for presymptomatic diagnosis and intervention. Predicting molecular pathology from clinical and radiological phenotypes remains challenging; however, certain patterns have been identified, and genetically mediated forms of frontotemporal dementia have spearheaded this enterprise. Here we present a clinical roadmap for diagnosis and assessment of the frontotemporal dementias, motivated by our emerging understanding of the mechanisms by which pathogenic protein effects at the cellular level translate to abnormal neural network physiology and ultimately, complex clinical symptoms. We conclude by outlining principles of management and prospects for disease modification
Attachment styles and personal growth following romantic breakups: The mediating roles of distress, rumination, and tendency to rebound
© 2013 Marshall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.The purpose of this research was to examine the associations of attachment anxiety and avoidance with personal growth following relationship dissolution, and to test breakup distress, rumination, and tendency to rebound with new partners as mediators of these associations. Study 1 (N = 411) and Study 2 (N = 465) measured attachment style, breakup distress, and personal growth; Study 2 additionally measured ruminative reflection, brooding, and proclivity to rebound with new partners. Structural equation modelling revealed in both studies that anxiety was indirectly associated with greater personal growth through heightened breakup distress, whereas avoidance was indirectly associated with lower personal growth through inhibited breakup distress. Study 2 further showed that the positive association of breakup distress with personal growth was accounted for by enhanced reflection and brooding, and that anxious individuals’ greater personal growth was also explained by their proclivity to rebound. These findings suggest that anxious individuals’ hyperactivated breakup distress may act as a catalyst for personal growth by promoting the cognitive processing of breakup-related thoughts and emotions, whereas avoidant individuals’ deactivated distress may inhibit personal growth by suppressing this cognitive work
Reproductive competition triggers mass eviction in cooperative banded mongooses
In many vertebrate societies, forced eviction of group members is an important determinant of population structure, but little is known about what triggers eviction. Three main explanations are (1) the reproductive competition hypothesis; (2) the coercion of cooperation hypothesis; and (3) the adaptive forced dispersal hypothesis. The last hypothesis proposes that dominant individuals use eviction as an adaptive strategy to propagate copies of their alleles through a highly structured population. We tested these hypotheses as explanations for eviction in cooperatively breeding banded mongooses (Mungos mungo), using a 16-year dataset on life history, behaviour and relatedness. In this species, groups of females, or mixed-sex groups, are periodically evicted en masse. Our evidence suggests that reproductive competition is the main ultimate trigger for eviction for both sexes. We find little evidence that mass eviction is used to coerce helping, or as a mechanism to force dispersal of relatives into the population. Eviction of females changes the landscape of reproductive competition for remaining males, which may explain why males are evicted alongside females. Our results show that the consequences of resolving within-group conflict resonate through groups and populations to affect population structure, with important implications for social evolution
- …