1,566 research outputs found

### Identification and estimation of hedonic models

This paper considers the identification and estimation of hedonic models. We establish that in an additive version of the hedonic model, technology and preferences are generically nonparametrically identified from data on demand and supply in a single hedonic market. The empirical literature that claims that hedonic models estimated on data from a single market are fundamentally underidentified is based on arbitrary linearizations that do not use all the information in the model. The exact economic model that justifies linear approximations is unappealing. Nonlinearities are generic features of equilibrium in hedonic models and a fundamental and economically motivated source of identification

### T-Branes and Monodromy

We introduce T-branes, or "triangular branes," which are novel non-abelian
bound states of branes characterized by the condition that on some loci, their
matrix of normal deformations, or Higgs field, is upper triangular. These
configurations refine the notion of monodromic branes which have recently
played a key role in F-theory phenomenology. We show how localized matter
living on complex codimension one subspaces emerge, and explain how to compute
their Yukawa couplings, which are localized in complex codimension two. Not
only do T-branes clarify what is meant by brane monodromy, they also open up a
vast array of new possibilities both for phenomenological constructions and for
purely theoretical applications. We show that for a general T-brane, the
eigenvalues of the Higgs field can fail to capture the spectrum of localized
modes. In particular, this provides a method for evading some constraints on
F-theory GUTs which have assumed that the spectral equation for the Higgs field
completely determines a local model.Comment: 110 pages, 5 figure

### The Conformal Sector of F-theory GUTs

D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte

### The Higgs as a Probe of Supersymmetric Extra Sectors

We present a general method for calculating the leading contributions to h ->
gg and h -> gamma gamma in models where the Higgs weakly mixes with a nearly
supersymmetric extra sector. Such mixing terms can play an important role in
raising the Higgs mass relative to the value expected in the MSSM. Our method
applies even when the extra sector is strongly coupled, and moreover does not
require a microscopic Lagrangian description. Using constraints from holomorphy
we fix the leading parametric form of the contributions to these Higgs
processes, including the Higgs mixing angle dependence, up to an overall
coefficient. Moreover, when the Higgs is the sole source of mass for a
superconformal sector, we show that even this coefficient is often calculable.
For appropriate mixing angles, the contribution of the extra states to h -> gg
and h -> gamma gamma can vanish. We also discuss how current experimental
limits already lead to non-trivial constraints on such models. Finally, we
provide examples of extra sectors which satisfy the requirements necessary to
use the holomorphic approximation.Comment: v4: 34 pages, 2 figures, typo corrected and clarification adde

### On Global Flipped SU(5) GUTs in F-theory

We construct an SU(4) spectral divisor and its factorization of types (3,1)
and (2,2) based on the construction proposed in [1]. We calculate the chiral
spectra of flipped SU(5) GUTs by using the spectral divisor construction. The
results agree with those from the analysis of semi-local spectral covers. Our
computations provide an example for the validity of the spectral divisor
construction and suggest that the standard heterotic formulae are applicable to
the case of F-theory on an elliptically fibered Calabi-Yau fourfold with no
heterotic dual.Comment: 45 pages, 12 tables, 1 figure; typos corrected, footnotes added, and
a reference adde

### Flipped SU(5) GUTs from E_8 Singularities in F-theory

In this paper we construct supersymmetric flipped SU(5) GUTs from E_8
singularities in F-theory. We start from an SO(10) singularity unfolded from an
E_8 singularity by using an SU(4) spectral cover. To obtain realistic models,
we consider (3,1) and (2,2) factorizations of the SU(4) cover. After turning on
the massless U(1)_X gauge flux, we obtain the SU(5) X U(1)_X gauge group. Based
on the well-studied geometric backgrounds in the literature, we demonstrate
several models and discuss their phenomenology.Comment: 46 pages, 23 tables, 1 figure, typos corrected, references added, and
new examples presente

### Electroweak Symmetry Breaking in the DSSM

We study the theoretical and phenomenological consequences of modifying the
Kahler potential of the MSSM two Higgs doublet sector. Such modifications
naturally arise when the Higgs sector mixes with a quasi-hidden conformal
sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric
Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling
dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field
space due to the presence of quasi-hidden sector states which get their mass
from the Higgs vevs. The presence of these extra states leads to the fact that
even as Delta approaches 1, the DSSM does not reduce to the MSSM. In
particular, the Higgs can naturally be heavier than the W- and Z-bosons.
Perturbative gauge coupling unification, a large top quark Yukawa, and
consistency with precision electroweak can all be maintained for Delta close to
unity. Moreover, such values of Delta can naturally be obtained in
string-motivated constructions. The quasi-hidden sector generically contains
states charged under SU(5)_GUT as well as gauge singlets, leading to a rich,
albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

### Partially Composite Higgs in Supersymmetry

We propose a framework for natural breaking of electroweak symmetry in
supersymmetric models, where elementary Higgs fields are semi-perturbatively
coupled to a strong superconformal sector. The Higgs VEVs break conformal
symmetry in the strong sector at the TeV scale, and the strong sector in turn
gives important contributions to the Higgs potential, giving rise to a kind of
Higgs bootstrap. A Higgs with mass 125\GeV can be accommodated without any
fine tuning. A Higgsino mass of order the Higgs mass is also dynamically
generated in these models. The masses in the strong sector generically violate
custodial symmetry, and a good precision electroweak fit requires tuning of
order $\sim 10%$. The strong sector has an approximately supersymmetric
spectrum of hadrons at the TeV scale that can be observed by looking for a peak
in the $WZ$ invariant mass distribution, as well as final states containing
multiple $W$, $Z$, and Higgs bosons. The models also generically predict large
corrections (either enhancement or suppression) to the h \to \ga\ga width.Comment: 31 page

### Building SO(10) models from F-theory

We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties
within the framework of the maximal underlying E_8 symmetry in the elliptic
fibration. We consider the symmetry enhancements along the intersections of
seven-branes with the GUT surface and study in detail the embedding of the
abelian factors undergoing monodromies in the covering gauge groups. We combine
flux data from the successive breaking of SO(10) to SU(5) gauge symmetry and
subsequently to the Standard Model one, and further constrain the parameters
determining the models' particle spectra. In order to eliminate dangerous
baryon number violating operators we propose ways to construct matter parity
like symmetries from intrinsic geometric origin. We study implementations of
the resulting constrained scenario in specific examples obtained for a variety
of monodromies.Comment: 53 page

- âŠ