116 research outputs found

    Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro

    Get PDF
    IntroductionProducts using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin.ObjectivesThis study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo.Materials and MethodsWe used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured.ResultsThe effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin.ConclusionThis study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated

    In Vitro Cell Models for Ophthalmic Drug Development Applications

    Get PDF
    © Sara Shafaie et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.Peer reviewe

    A Synthetic Adjuvant to Enhance and Expand Immune Responses to Influenza Vaccines

    Get PDF
    Safe, effective adjuvants that enhance vaccine potency, including induction of neutralizing Abs against a broad range of variant strains, is an important strategy for the development of seasonal influenza vaccines which can provide optimal protection, even during seasons when available vaccines are not well matched to circulating viruses. We investigated the safety and ability of Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE), a synthetic Toll-like receptor (TLR)4 agonist formulation, to adjuvant Fluzone® in mice and non-human primates. The GLA-SE adjuvanted Fluzone vaccine caused no adverse reactions, increased the induction of T helper type 1 (TH1)-biased cytokines such as IFNγ, TNF and IL-2, and broadened serological responses against drifted A/H1N1 and A/H3N2 influenza variants. These results suggest that synthetic TLR4 adjuvants can enhance the magnitude and quality of protective immunity induced by influenza vaccines

    Vaccination with Plasmodium knowlesi AMA1 Formulated in the Novel Adjuvant Co-Vaccine HT™ Protects against Blood-Stage Challenge in Rhesus Macaques

    Get PDF
    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates