460 research outputs found

    Quantum estimation of coupled parameters and the role of entanglement

    Get PDF
    The quantum Cramer-Rao bound places a limit on the mean square error of a parameter estimation procedure, and its numerical value is determined by the quantum Fisher information. For single parameters, this leads to the well- known Heisenberg limit that surpasses the classical shot-noise limit. When estimating multiple parameters, the situation is more complicated and the quantum Cramer-Rao bound is generally not attainable. In such cases, the use of entanglement typically still offers an enhancement in precision. Here, we demonstrate that entanglement is detrimental when estimating some nuisance parameters. In general, we find that the estimation of coupled parameters does not benefit from either classical or quantum correlations. We illustrate this effect in a practical application for optical gyroscopes

    Local versus Global Strategies in Multi-parameter Estimation

    Get PDF
    We consider the problem of estimating multiple phases using a multi-mode interferometer. In this setting we show that while global strategies with multi-mode entanglement can lead to high precision gains, the same precision enhancements can be obtained with mode-separable states and local measurements. The crucial resource for quantum enhancement is shown to be a large number variance in the probe state, which can be obtained without any entanglement between the modes. This has important practical implications because local strategies using separable states have many advantages over global schemes using multi-mode-entangled states. Such advantages include a robustness to local estimation failure, more flexibility in the distribution of resources, and comparatively easier state preparation. We obtain our results by analyzing two different schemes: the first uses a set of interferometers, which can be used as a model for a network of quantum sensors, and the second looks at measuring a number of phases relative to a reference, which is concerned primarily with quantum imaging

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    Why do Particle Clouds Generate Electric Charges?

    Full text link
    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment

    Expression of alternansucrase in potato plants

    Get PDF
    Alternan, which consists of alternating α-(1→3)/α-(1→6)-linked glucosyl residues, was produced in potato tubers by expressing a mature alternansucrase (Asr) gene from Leuconostoc mesenteroides NRRL B-1355 in potato. Detection of alternan was performed by enzyme-linked immunosorbent assay in tuber juices, revealing a concentration between 0.3 and 1.2 mg g-1 fresh wt. The Asr transcript levels correlated well with alternan accumulation in tuber juices. It appeared that the expression of sucrose-regulated starch-synthesizing genes (ADP-glucose pyrophosphorylase subunit S and granule-bound starch synthase I) was down-regulated. Despite this, the physico-chemical properties of the transgenic starches were unaltered. These results are compared to those obtained with other transgenic potato plants producing mutan [α-(1→3)-linked glucosyl residues] and dextran [α-(1→6)-linked glucosyl residues]

    Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection

    Get PDF
    Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations.We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust
    • …
    corecore