143 research outputs found

    Survey of H-alpha emission from thirty nearby dwarf galaxies

    Full text link
    Measurements of the H-alpha flux from 30 neighboring dwarf galaxies are presented. After correction for absorption, these fluxes are used to estimate the star formation rate (SFR). The SFR for 18 of the galaxies according to the H-alpha emission are compared with estimates of the SFR from FUV magnitudes obtained with the GALEX telescope. These are in good agreement over the range log[SFR] = [-3,0]M sun/yr.Comment: 18 pages, 10 figures, 3 table

    Detection of Lyman-alpha Emitting Galaxies at Redshift z=4.55

    Full text link
    Studies of the formation and early history of galaxies have been hampered by the difficulties inherent in detecting faint galaxy populations at high redshift. As a consequence, observations at the highest redshifts (3.5 < z < 5) have been restricted to objects that are intrinsically bright. These include quasars, radio galaxies, and some Ly alpha-emitting objects that are very close to (within ~10 kpc) -- and appear to be physically associated with -- quasars. But the extremely energetic processes which make these objects easy to detect also make them unrepresentative of normal (field) galaxies. Here we report the discovery using Keck spectroscopic observations of two Ly alpha-emitting galaxies at redshift z = 4.55, which are sufficiently far from the nearest quasar (~700 kpc) that radiation from the quasar is unlikely to provide the excitation source of the Ly alpha emission. Instead, these galaxies appear to be undergoing their first burst of star formation, at a time when the Universe was less than one billion years old.Comment: 8 pages, 1 landscape table, and 3 PostScript figures. Uses aaspp4.sty, flushrt.sty, aj_pt4.sty, overcite.sty (style macros available from xxx.lanl.gov) Figure 1 is bitmapped to 100 dpi. The original PostScript version of Fig. 1 is available via anonymous ftp to ftp://hubble.ifa.hawaii.edu/pub/preprints To appear in Natur

    Dusty star forming galaxies at high redshift

    Get PDF
    The global star formation rate in high redshift galaxies, based on optical surveys, shows a strong peak at a redshift of z=1.5, which implies that we have already seen most of the formation. High redshift galaxies may, however, emit most of their energy at submillimeter wavelengths if they contain substantial amounts of dust. The dust would absorb the starlight and reradiate it as far-infrared light, which would be redshifted to the submillimeter range. Here we report a deep survey of two blank regions of sky performed at submillimeter wavelengths (450 and 850-micron). If the sources we detect in the 850-micron band are powered by star formation, then each must be converting more than 100 solar masses of gas per year into stars, which is larger than the maximum star formation rates inferred for most optically-selected galaxies. The total amount of high redshift star formation is essentially fixed by the level of background light, but where the peak occurs in redshift for the submillimeter is not yet established. However, the background light contribution from only the sources detected at 850-micron is already comparable to that from the optically-selected sources. Establishing the main epoch of star formation will therefore require a combination of optical and submillimeter studies.Comment: 10 pages + 2 Postscript figures, under embargo at Natur

    A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies

    Full text link
    The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we investigate the stellar mass function in elliptical galaxies by measuring the strength of the Na I doublet and the Wing-Ford molecular FeH band in their spectra. These lines are strong in stars with masses <0.3 Msun and weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low mass stars implies that they are very abundant in elliptical galaxies, making up >80% of the total number of stars and contributing >60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur

    An Optical Counterpart to the Anomalous X-ray Pulsar 4U 0142+61

    Get PDF
    The energy source of the anomalous X-ray pulsars is not well understood, hence their designation as anomalous. Unlike binary X-ray pulsars, no companions are seen, so the energy cannot be supplied by accretion of matter from a companion star. The loss of rotational energy, which powers radio pulsars, is insufficient to power AXPs. Two models are generally considered: accretion from a large disk left over from the birth process, or decay of a very strong magnetic field (10^15 G) associated with a 'magnetar'. The lack of counterparts at other wavelengths has hampered progress in our understanding of these objects. Here, we present deep optical observations of the field around 4U 0142+61, which is the brightest AXP in X-rays. We find an object with peculiar optical colours at the position of the X-ray source, and argue that it is the optical counterpart. The optical emission is too faint to admit the presence of a large accretion disk, but may be consistent with magnetospheric emission from a magnetar.Comment: 16 pages, 3 figures, accepted by Nature. Press embargo until 1900 hrs London time (GMT) on 6 December 200

    Interactions between downslope flows and a developing cold-air pool

    Get PDF
    A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe

    Type IIn supernovae at z ~ 2 from archival data

    Full text link
    Supernovae have been confirmed to redshift z ~ 1.7 for type Ia (thermonuclear detonation of a white dwarf) and to z ~ 0.7 for type II (collapse of the core of the star). The subclass type IIn supernovae are luminous core-collapse explosions of massive stars and, unlike other types, are very bright in the ultraviolet, which should enable them to be found optically at redshifts z ~ 2 and higher. In addition, the interaction of the ejecta with circumstellar material creates strong, long-lived emission lines that allow spectroscopic confirmation of many events of this type at z ~ 2 for 3 - 5 years after explosion. Here we report three spectroscopically confirmed type IIn supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data using a method designed to exploit these properties at z ~ 2. Type IIn supernovae directly probe the formation of massive stars at high redshift. The number found to date is consistent with the expectations of a locally measured stellar initial mass function, but not with an evolving initial mass function proposed to explain independent observations at low and high redshift.Comment: 8 pages, 2 figures, includes supplementary informatio

    Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    Full text link
    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio
    • …
    corecore