143 research outputs found
Survey of H-alpha emission from thirty nearby dwarf galaxies
Measurements of the H-alpha flux from 30 neighboring dwarf galaxies are
presented. After correction for absorption, these fluxes are used to estimate
the star formation rate (SFR). The SFR for 18 of the galaxies according to the
H-alpha emission are compared with estimates of the SFR from FUV magnitudes
obtained with the GALEX telescope. These are in good agreement over the range
log[SFR] = [-3,0]M sun/yr.Comment: 18 pages, 10 figures, 3 table
Detection of Lyman-alpha Emitting Galaxies at Redshift z=4.55
Studies of the formation and early history of galaxies have been hampered by
the difficulties inherent in detecting faint galaxy populations at high
redshift. As a consequence, observations at the highest redshifts (3.5 < z < 5)
have been restricted to objects that are intrinsically bright. These include
quasars, radio galaxies, and some Ly alpha-emitting objects that are very close
to (within ~10 kpc) -- and appear to be physically associated with -- quasars.
But the extremely energetic processes which make these objects easy to detect
also make them unrepresentative of normal (field) galaxies. Here we report the
discovery using Keck spectroscopic observations of two Ly alpha-emitting
galaxies at redshift z = 4.55, which are sufficiently far from the nearest
quasar (~700 kpc) that radiation from the quasar is unlikely to provide the
excitation source of the Ly alpha emission. Instead, these galaxies appear to
be undergoing their first burst of star formation, at a time when the Universe
was less than one billion years old.Comment: 8 pages, 1 landscape table, and 3 PostScript figures. Uses
aaspp4.sty, flushrt.sty, aj_pt4.sty, overcite.sty (style macros available
from xxx.lanl.gov) Figure 1 is bitmapped to 100 dpi. The original PostScript
version of Fig. 1 is available via anonymous ftp to
ftp://hubble.ifa.hawaii.edu/pub/preprints To appear in Natur
Dusty star forming galaxies at high redshift
The global star formation rate in high redshift galaxies, based on optical
surveys, shows a strong peak at a redshift of z=1.5, which implies that we have
already seen most of the formation. High redshift galaxies may, however, emit
most of their energy at submillimeter wavelengths if they contain substantial
amounts of dust. The dust would absorb the starlight and reradiate it as
far-infrared light, which would be redshifted to the submillimeter range. Here
we report a deep survey of two blank regions of sky performed at submillimeter
wavelengths (450 and 850-micron). If the sources we detect in the 850-micron
band are powered by star formation, then each must be converting more than 100
solar masses of gas per year into stars, which is larger than the maximum star
formation rates inferred for most optically-selected galaxies. The total amount
of high redshift star formation is essentially fixed by the level of background
light, but where the peak occurs in redshift for the submillimeter is not yet
established. However, the background light contribution from only the sources
detected at 850-micron is already comparable to that from the
optically-selected sources. Establishing the main epoch of star formation will
therefore require a combination of optical and submillimeter studies.Comment: 10 pages + 2 Postscript figures, under embargo at Natur
A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies
The stellar initial mass function (IMF) describes the mass distribution of
stars at the time of their formation and is of fundamental importance for many
areas of astrophysics. The IMF is reasonably well constrained in the disk of
the Milky Way but we have very little direct information on the form of the IMF
in other galaxies and at earlier cosmic epochs. Here we investigate the stellar
mass function in elliptical galaxies by measuring the strength of the Na I
doublet and the Wing-Ford molecular FeH band in their spectra. These lines are
strong in stars with masses <0.3 Msun and weak or absent in all other types of
stars. We unambiguously detect both signatures, consistent with previous
studies that were based on data of lower signal-to-noise ratio. The direct
detection of the light of low mass stars implies that they are very abundant in
elliptical galaxies, making up >80% of the total number of stars and
contributing >60% of the total stellar mass. We infer that the IMF in massive
star-forming galaxies in the early Universe produced many more low mass stars
than the IMF in the Milky Way disk, and was probably slightly steeper than the
Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur
An Optical Counterpart to the Anomalous X-ray Pulsar 4U 0142+61
The energy source of the anomalous X-ray pulsars is not well understood,
hence their designation as anomalous. Unlike binary X-ray pulsars, no
companions are seen, so the energy cannot be supplied by accretion of matter
from a companion star. The loss of rotational energy, which powers radio
pulsars, is insufficient to power AXPs. Two models are generally considered:
accretion from a large disk left over from the birth process, or decay of a
very strong magnetic field (10^15 G) associated with a 'magnetar'. The lack of
counterparts at other wavelengths has hampered progress in our understanding of
these objects. Here, we present deep optical observations of the field around
4U 0142+61, which is the brightest AXP in X-rays. We find an object with
peculiar optical colours at the position of the X-ray source, and argue that it
is the optical counterpart. The optical emission is too faint to admit the
presence of a large accretion disk, but may be consistent with magnetospheric
emission from a magnetar.Comment: 16 pages, 3 figures, accepted by Nature. Press embargo until 1900 hrs
London time (GMT) on 6 December 200
Interactions between downslope flows and a developing cold-air pool
A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe
Type IIn supernovae at z ~ 2 from archival data
Supernovae have been confirmed to redshift z ~ 1.7 for type Ia (thermonuclear
detonation of a white dwarf) and to z ~ 0.7 for type II (collapse of the core
of the star). The subclass type IIn supernovae are luminous core-collapse
explosions of massive stars and, unlike other types, are very bright in the
ultraviolet, which should enable them to be found optically at redshifts z ~ 2
and higher. In addition, the interaction of the ejecta with circumstellar
material creates strong, long-lived emission lines that allow spectroscopic
confirmation of many events of this type at z ~ 2 for 3 - 5 years after
explosion. Here we report three spectroscopically confirmed type IIn
supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data
using a method designed to exploit these properties at z ~ 2. Type IIn
supernovae directly probe the formation of massive stars at high redshift. The
number found to date is consistent with the expectations of a locally measured
stellar initial mass function, but not with an evolving initial mass function
proposed to explain independent observations at low and high redshift.Comment: 8 pages, 2 figures, includes supplementary informatio
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
Hydrogen-poor superluminous stellar explosions
Supernovae (SNe) are stellar explosions driven by gravitational or
thermonuclear energy, observed as electromagnetic radiation emitted over weeks
or more. In all known SNe, this radiation comes from internal energy deposited
in the outflowing ejecta by either radioactive decay of freshly-synthesized
elements (typically 56Ni), stored heat deposited by the explosion shock in the
envelope of a supergiant star, or interaction between the SN debris and
slowly-moving, hydrogen-rich circumstellar material. Here we report on a new
class of luminous SNe whose observed properties cannot be explained by any of
these known processes. These include four new SNe we have discovered, and two
previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as
members. These SNe are all ~10 times brighter than SNe Ia, do not show any
trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods
of time, and have late-time decay rates which are inconsistent with
radioactivity. Our data require that the observed radiation is emitted by
hydrogen-free material distributed over a large radius (~10^15 cm) and
expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous
events can be observed out to redshifts z>4 and offer an excellent opportunity
to study star formation in, and the interstellar medium of, primitive distant
galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U
Supernova 2007bi as a pair-instability explosion
Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse
progressively heavier elements in their centres, up to inert iron. The core
then gravitationally collapses to a neutron star or a black hole, leading to an
explosion -- an iron-core-collapse supernova (SN). In contrast, extremely
massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores
which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at
relatively low densities. Conversion of energetic, pressure-supporting photons
into electron-positron pairs occurs prior to oxygen ignition, and leads to a
violent contraction that triggers a catastrophic nuclear explosion. Tremendous
energies (>~ 10^{52} erg) are released, completely unbinding the star in a
pair-instability SN (PISN), with no compact remnant. Transitional objects with
100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse
supernovae following violent mass ejections, perhaps due to short instances of
the pair instability, may have been identified. However, genuine PISNe, perhaps
common in the early Universe, have not been observed to date. Here, we present
our discovery of SN 2007bi, a luminous, slowly evolving supernova located
within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding
core mass to be likely ~100 M_{solar}, in which case theory unambiguously
predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were
synthesized, and that our observations are well fit by PISN models. A PISN
explosion in the local Universe indicates that nearby dwarf galaxies probably
host extremely massive stars, above the apparent Galactic limit, perhaps
resulting from star formation processes similar to those that created the first
stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009),
including all supplementary informatio
- …