283 research outputs found

    Improved speed estimation in sensorless PM brushless AC drives

    Get PDF
    The application of flux-observer-based sensorless control to permanent-magnet brushless AC motor drives is described. Current methods of speed estimation are assessed, both theoretically and experimentally, and an improved method, which combines the best features of methods in which speed is derived from the differential of rotor position and from the ratio of the electromotive force to excitation flux linkage, is proposed. Its performance is verified experimentally

    Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF

    Get PDF
    The sensorless control of brushless machines by detecting the third harmonic back electromotive force is a relatively simple and potentially low-cost technique. However, its application has been reported only for brushless dc motors operating under normal commutation. In this paper, the utility of the method for the sensorless control of both brushless dc and ac motors, including operation in the flux-weakening mode, is demonstrated

    Impurity state in the vortex core of d-wave superconductors: Anderson impurity model versus unitary impurity model

    Get PDF
    Using an extended Anderson/Kondo impurity model to describe the magnetic moments around an impurity doped in high-TcT_{\text{c}} d-wave cuprates and in the framework of the slave-boson meanfield approach, we study numerically the impurity state in the vortex core by exact diagonalization of the well-established Bogoliubov-de Gennes equations. The low-energy impurity state is found to be good agreement with scanning tunnelingmicroscopy observation. After pinning a vortex on the impurity site, we compare the unitary impurity model with the extended Anderson impurity model by examining the effect of the magnetic field on the impurity state. We find that the impurity resonance in the unitary impurity model is strongly suppressed by the vortex; while it is insensitive to the field in the extended Anderson impurity model.Comment: 8 pages, 3 figure

    Analysis of Stator/Rotor Pole Combinations in Variable Flux Reluctance Machines Using Magnetic Gearing Effect

    Get PDF
    The torque production of variable flux reluctance machines (VFRMs) is explained by the “magnetic gearing effect” in recent research. Based on this theory, this paper concludes the general principles for feasible stator/rotor pole selection and corresponding winding configuration for VFRMs. The influence of stator/rotor pole combination on torque performance is comprehensively investigated not only in terms of average torque and torque ripple, but also in terms of each single torque component. It is found that the synchronous torque is proportional to the fundamental rotor radial permeance component and has the dominant contribution in average torque for all the VFRMs. The stator slot number and rotor pole number should be close to each other to achieve the highest output torque. Meanwhile, the 6-stator-slot/(6i ± 2)-rotor-pole (6s/(6i ± 2)r) and their multiples are large torque ripple origins for VFRMs due to the large reluctance torque ripple. Also, it is proved that a lower stator slot number is preferable choice to obtain higher torque/copper loss ratio, whereas a higher stator slot number is more suitable for large machine scale scenario. Finally, the analyses and conclusions are verified by finite element analysis on the 6-, 12-, 18-, and 24-stator-slot VFRMs and by experimental tests on a 6s/7r and 6s/8r VFRMs

    Thermodynamic properties of the d-density wave order in cuprates

    Full text link
    We solve a popular effective Hamiltonian of competing dd-density wave and d-wave superconductivity orders self-consistently at the mean-field level for a wide range of doping and temperature. The theory predicts a temperature dependence of the dd-density wave order parameter seemingly inconsistent with the neutron scattering and ÎĽ\muSR experiments of the cuprates. We further calculate thermodynamic quantities, such as chemical potential, entropy and specific heat. Their distinct features can be used to test the existence of the dd-density wave order in cuprates.Comment: changed to 4 pages and 4 figures. More reference added. Accepted by Phys. Rev.

    Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks

    Full text link
    It is shown that the quasiparticle states localized in the vicinity of surface imperfections of atomic size can be responsible for the zero-bias tunneling conductance peaks in high-Tc superconductors. The contribution from these states can be easily separated from other mechanisms using their qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    Comparative Analysis of Variable Flux Reluctance Machines With Double- and Single-Layer Concentrated Armature Windings

    Get PDF
    In this paper, the variable flux reluctance machines (VFRMs) with double- and single-layer concentrated armature windings are comparatively analyzed. First, the single-layer winding is found to have an identical winding factor as a double-layer winding, but significantly larger peak value of magneto-motive force, which will result in severe local saturation in cores of VFRMs with single-layer winding. Then, based on the magnetic gearing effect and finite-element analysis, the electromagnetic performances of VFRMs with both winding types are compared. The VFRMs with single-layer winding are proved to be always lower in average torque, higher in torque ripple, larger in iron loss, and lower in efficiency than those with double-layer winding. Nevertheless, better fault-tolerance capability is achieved for a single-layer winding due to its physical separation between phases and larger phase self-inductance. Overall, the double-layer armature winding is the preferable choice for the VFRMs. Finally, a 6-stator-slot/4-rotor-pole VFRM with both double- and single-layer windings is prototyped for verification

    Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops

    Full text link
    We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field are observed in the critical temperature Tc versus applied magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak 'low frequency' response shows up, which can be attributed to the inner loop supercurrent magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Rotor shaping method for torque ripple mitigation in variable flux reluctance machines

    Get PDF
    In this paper, four rotor shaping methods, i.e., eccentric circular, inverse cosine, inverse cosine with third harmonic, and multi-step shaping methods, are developed and compared for torque ripple mitigation in variable flux reluctance machines (VFRMs). By using a 6-stator-pole/7-rotor-pole (6/7) VFRM as an example, the design criterions and capabilities of these four methods are illustrated. It is found that all the rotor shaping methods are capable of torque ripple mitigation and applicable to all the VFRMs except those with 6 k /(6 i ± 2) k ( k , i = 1, 2, 3…) stator/rotor pole combinations. Moreover, the inverse cosine with third harmonic and multi-step shaping methods are found to have the best performance. They are able to reduce the torque ripple by 90% at a cost of only 3% torque density reduction. A 6/7 VFRM with both conventional and shaped rotors is prototyped and tested for verification
    • …
    corecore