473 research outputs found
Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions
The EPDiff equation (or dispersionless Camassa-Holm equation in 1D) is a well
known example of geodesic motion on the Diff group of smooth invertible maps
(diffeomorphisms). Its recent two-component extension governs geodesic motion
on the semidirect product , where
denotes the space of scalar functions. This paper generalizes the second
construction to consider geodesic motion on ,
where denotes the space of scalar functions that take values on
a certain Lie algebra (for example,
). Measure-valued delta-like
solutions are shown to be momentum maps possessing a dual pair structure,
thereby extending previous results for the EPDiff equation. The collective
Hamiltonians are shown to fit into the Kaluza-Klein theory of particles in a
Yang-Mills field and these formulations are shown to apply also at the
continuum PDE level. In the continuum description, the Kaluza-Klein approach
produces the Kelvin circulation theorem.Comment: 22 pages, 2 figures. Submitted to Proc. R. Soc.
Invariants and Labels in Lie-Poisson Systems
Reduction is a process that uses symmetry to lower the order of a Hamiltonian
system. The new variables in the reduced picture are often not canonical: there
are no clear variables representing positions and momenta, and the Poisson
bracket obtained is not of the canonical type. Specifically, we give two
examples that give rise to brackets of the noncanonical Lie-Poisson form: the
rigid body and the two-dimensional ideal fluid. From these simple cases, we
then use the semidirect product extension of algebras to describe more complex
physical systems. The Casimir invariants in these systems are examined, and
some are shown to be linked to the recovery of information about the
configuration of the system. We discuss a case in which the extension is not a
semidirect product, namely compressible reduced MHD, and find for this case
that the Casimir invariants lend partial information about the configuration of
the system.Comment: 11 pages, RevTeX. To appear in Proceedings of the 13th Florida
Workshop in Astronomy and Physic
Discrete Variational Optimal Control
This paper develops numerical methods for optimal control of mechanical
systems in the Lagrangian setting. It extends the theory of discrete mechanics
to enable the solutions of optimal control problems through the discretization
of variational principles. The key point is to solve the optimal control
problem as a variational integrator of a specially constructed
higher-dimensional system. The developed framework applies to systems on
tangent bundles, Lie groups, underactuated and nonholonomic systems with
symmetries, and can approximate either smooth or discontinuous control inputs.
The resulting methods inherit the preservation properties of variational
integrators and result in numerically robust and easily implementable
algorithms. Several theoretical and a practical examples, e.g. the control of
an underwater vehicle, will illustrate the application of the proposed
approach.Comment: 30 pages, 6 figure
Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping
Explicit and semi-explicit geometric integration schemes for dissipative
perturbations of Hamiltonian systems are analyzed. The dissipation is
characterized by a small parameter , and the schemes under study
preserve the symplectic structure in the case . In the case
the energy dissipation rate is shown to be asymptotically
correct by backward error analysis. Theoretical results on monotone decrease of
the modified Hamiltonian function for small enough step sizes are given.
Further, an analysis proving near conservation of relative equilibria for small
enough step sizes is conducted.
Numerical examples, verifying the analyses, are given for a planar pendulum
and an elastic 3--D pendulum. The results are superior in comparison with a
conventional explicit Runge-Kutta method of the same order
On discrete integrable equations with convex variational principles
We investigate the variational structure of discrete Laplace-type equations
that are motivated by discrete integrable quad-equations. In particular, we
explain why the reality conditions we consider should be all that are
reasonable, and we derive sufficient conditions (that are often necessary) on
the labeling of the edges under which the corresponding generalized discrete
action functional is convex. Convexity is an essential tool to discuss
existence and uniqueness of solutions to Dirichlet boundary value problems.
Furthermore, we study which combinatorial data allow convex action functionals
of discrete Laplace-type equations that are actually induced by discrete
integrable quad-equations, and we present how the equations and functionals
corresponding to (Q3) are related to circle patterns.Comment: 39 pages, 8 figures. Revision of the whole manuscript, reorder of
sections. Major changes due to additional reality conditions for (Q3) and
(Q4): new Section 2.3; Theorem 1 and Sections 3.5, 3.6, 3.7 update
Variational Integrators for Almost-Integrable Systems
We construct several variational integrators--integrators based on a discrete
variational principle--for systems with Lagrangians of the form L = L_A +
epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These
integrators exploit that epsilon << 1 to increase their accuracy by
constructing discrete Lagrangians based on the assumption that the integrator
trajectory is close to that of the integrable system. Several of the
integrators we present are equivalent to well-known symplectic integrators for
the equivalent perturbed Hamiltonian systems, but their construction and error
analysis is significantly simpler in the variational framework. One novel
method we present, involving a weighted time-averaging of the perturbing terms,
removes all errors from the integration at O(epsilon). This last method is
implicit, and involves evaluating a potentially expensive time-integral, but
for some systems and some error tolerances it can significantly outperform
traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as
accepted by Celestial Mechanics and Dynamical Astronom
Discrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic
systems. We derive the nonholonomic discrete Euler-Lagrange equations in a
setting which permits to deduce geometric integrators for continuous
nonholonomic systems (reduced or not). The formalism is given in terms of Lie
groupoids, specifying a discrete Lagrangian and a constraint submanifold on it.
Additionally, it is necessary to fix a vector subbundle of the Lie algebroid
associated to the Lie groupoid. We also discuss the existence of nonholonomic
evolution operators in terms of the discrete nonholonomic Legendre
transformations and in terms of adequate decompositions of the prolongation of
the Lie groupoid. The characterization of the reversibility of the evolution
operator and the discrete nonholonomic momentum equation are also considered.
Finally, we illustrate with several classical examples the wide range of
application of the theory (the discrete nonholonomic constrained particle, the
Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a
rotating table and the two wheeled planar mobile robot).Comment: 45 page
Higher Order Variational Integrators: a polynomial approach
We reconsider the variational derivation of symplectic partitioned
Runge-Kutta schemes. Such type of variational integrators are of great
importance since they integrate mechanical systems with high order accuracy
while preserving the structural properties of these systems, like the
symplectic form, the evolution of the momentum maps or the energy behaviour.
Also they are easily applicable to optimal control problems based on mechanical
systems as proposed in Ober-Bl\"obaum et al. [2011].
Following the same approach, we develop a family of variational integrators
to which we refer as symplectic Galerkin schemes in contrast to symplectic
partitioned Runge-Kutta. These two families of integrators are, in principle
and by construction, different one from the other. Furthermore, the symplectic
Galerkin family can as easily be applied in optimal control problems, for which
Campos et al. [2012b] is a particular case.Comment: 12 pages, 1 table, 23rd Congress on Differential Equations and
Applications, CEDYA 201
- …