2,369 research outputs found

    Uso de nanodiscos de anfotericina B (AMB-NDs) para el tratamiento de enfermedades fúngicas en plantas

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Administration of human chorionic gonadotropin at embryo transfer induced ovulation of a first-wave dominant follicle and increased progesterone and transfer pregnancy rates

    Get PDF
    Beef Cattle Research, 2011 is known as Cattlemen’s Day, 2011Embryo transfer (ET) has become more widespread in recent years as a way to improve cattle genetics. According to the annual statistical survey of the American Embryo Transfer Association, more than 200,000 fresh and frozen bovine embryos were transferred in 2008. But despite advancements in reproductive technologies that have occurred since ET was commercialized in the 1970s, industrywide pregnancy rates are only 62.4 and 56.9% for fresh and frozen-thawed ET, respectively. Using ET helps avoid problems from failed fertilization; however, fertilization failure has been characterized as a relatively unimportant factor of pregnancy loss. Approximately 10% of pregnancy failures resulted from fertilization failure and another 10% from failed embryo development. Approximately 20 to 25% of the pregnancy loss in an ET program could be characterized as early embryonic loss

    BBN and the Primordial Abundances

    Full text link
    The relic abundances of the light elements synthesized during the first few minutes of the evolution of the Universe provide unique probes of cosmology and the building blocks for stellar and galactic chemical evolution, while also enabling constraints on the baryon (nucleon) density and on models of particle physics beyond the standard model. Recent WMAP analyses of the CBR temperature fluctuation spectrum, combined with other, relevant, observational data, has yielded very tight constraints on the baryon density, permitting a detailed, quantitative confrontation of the predictions of Big Bang Nucleosynthesis with the post-BBN abundances inferred from observational data. The current status of this comparison is presented, with an emphasis on the challenges to astronomy, astrophysics, particle physics, and cosmology it identifies.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L. Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"

    Stable propagation of an ordered array of cracks during directional drying

    Full text link
    We study the appearance and evolution of an array of parallel cracks in a thin slab of material that is directionally dried, and show that the cracks penetrate the material uniformly if the drying front is sufficiently sharp. We also show that cracks have a tendency to become evenly spaced during the penetration. The typical distance between cracks is mainly governed by the typical distance of the pattern at the surface, and it is not modified during the penetration. Our results agree with recent experimental work, and can be extended to three dimensions to describe the properties of columnar polygonal patterns observed in some geological formations.Comment: 8 pages, 4 figures, to appear in PR

    Phenomenology of the Gowdy Universe on T3×RT^3 \times R

    Full text link
    Numerical studies of the plane symmetric, vacuum Gowdy universe on T3×RT^3 \times R yield strong support for the conjectured asymptotically velocity term dominated (AVTD) behavior of its evolution toward the singularity except, perhaps, at isolated spatial points. A generic solution is characterized by spiky features and apparent ``discontinuities'' in the wave amplitudes. It is shown that the nonlinear terms in the wave equations drive the system generically to the ``small velocity'' AVTD regime and that the spiky features are caused by the absence of these terms at isolated spatial points.Comment: 19 pages, 21 figures, uses Revtex, psfi

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Erasmus Language students in a British University – a case study

    Get PDF
    Students’ assessment of their academic experience is actively sought by Higher Education institutions, as evidenced in the National Student Survey introduced in 2005. Erasmus students, despite their growing numbers, tend to be excluded from these satisfaction surveys, even though they, too, are primary customers of a University. This study aims to present results from bespoke questionnaires and semi-structured interviews with a sample of Erasmus students studying languages in a British University. These methods allow us insight into the experience of these students and their assessment as a primary customer, with a focus on language learning and teaching, university facilities and student support. It investigates to what extent these factors influence their levels of satisfaction and what costs of adaptation if any, they encounter. Although excellent levels of satisfaction were found, some costs affect their experience. They relate to difficulties in adapting to a learning methodology based on a low number of hours and independent learning and to a guidance and support system seen as too stifling. The results portray this cohort’s British University as a well-equipped and well-meaning but ultimately overbearing institution, which may indicate that minimising costs can eliminate some sources of dissatisfaction

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions ∑i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and ∑i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ∀ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c−c-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore