10,446 research outputs found
Computing Correct Truncated Excited State Wavefunctions
We demonstrate that, if a truncated expansion of a wave function is small,
then the standard excited states computational method, of optimizing one root
of a secular equation, may lead to an incorrect wave function - despite the
correct energy according to the theorem of Hylleraas, Undheim and McDonald -
whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)]
(independent of orthogonality to lower lying approximants) leads to correct
reliable small truncated wave functions. The demonstration is done in He
excited states, using truncated series expansions in Hylleraas coordinates, as
well as standard configuration-interaction truncated expansions.Comment: 4 pages, 1 figure, 2 tables, ICCMSE2016: International Conference of
Computational Methods in Science and Engineerin
Spectral methods for modeling supersonic chemically reacting flow fields
A numerical algorithm was developed for solving the equations describing chemically reacting supersonic flows. The algorithm employs a two-stage Runge-Kutta method for integrating the equations in time and a Chebyshev spectral method for integrating the equations in space. The accuracy and efficiency of the technique were assessed by comparison with an existing implicit finite-difference procedure for modeling chemically reacting flows. The comparison showed that the procedure presented yields equivalent accuracy on much coarser grids as compared to the finite-difference procedure with resultant significant gains in computational efficiency
Resolution requirements for numerical simulations of transition
The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition
Collisionless galaxy simulations
Three-dimensional fully self-consistent computer models were used to determine the evolution of galaxies consisting of 100 000 simulation stars. Comparison of two-dimensional simulations with three-dimensional simulations showed only a very slight stabilizing effect due to the additional degree of freedom. The addition of a fully self-consistent, nonrotating, exponential core/halo component resulted in considerable stabilization. A second series of computer experiments was performed to determine the collapse and relaxation of initially spherical, uniform density and uniform velocity dispersion stellar systems. The evolution of the system was followed for various amounts of angular momentum in solid body rotation. For initally low values of the angular momentum satisfying the Ostriker-Peebles stability criterion, the systems quickly relax to an axisymmetric shape and resemble elliptical galaxies in appearance. For larger values of the initial angular momentum bars develop and the systems undergo a much more drastic evolution
Formation of Hydrogenated Graphene Nanoripples by Strain Engineering and Directed Surface Self-assembly
We propose a new class of semiconducting graphene-based nanostructures:
hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics
analysis and first principles calculations. They are formed via a two-step
combinatorial approach: first by strain engineered pattern formation of
graphene nanoripples, followed by a curvature-directed self-assembly of H
adsorption. It offers a high level of control of the structure and morphology
of the HGNRs, and hence their band gaps which share common features with
graphene nanoribbons. A cycle of H adsorption/desorption at/from the same
surface locations completes a reversible metal-semiconductor-metal transition
with the same band gap.Comment: 11 pages, 5 figure
- …