1,545 research outputs found

    Promoting Public Health In The Context Of The “Obesity Epidemic”: False Starts And Promising New Directions

    Get PDF
    In the battle to combat obesity rates in the United States, several misconceptions have dominated policy initiatives. We address those misconceptions, including the notion that restrictive diets lead to long-term weight loss, that stigmatizing obesity is an effective strategy for promoting weight reduction, and that weight and physical health should be considered synonymous with one another. In offering correctives to each of these points, we draw on psychological science to suggest new policies that could be enacted at both the local and national levels. Instead of policies that rely solely on individual willpower, which is susceptible to failure, we recommend those that make use of environmental changes to reduce the amount of willpower necessary to achieve healthy behavior. Ultimately, the most effective policies will promote health rather than any arbitrary level of weight

    Taking A Stand: The Effects Of Standing Desks On Task Performance And Engagement

    Get PDF
    Time spent sitting is associated with negative health outcomes, motivating some individuals to adopt standing desk workstations. This study represents the first investigation of the effects of standing desk use on reading comprehension and creativity. In a counterbalanced, within-subjects design, 96 participants completed reading comprehension and creativity tasks while both sitting and standing. Participants self-reported their mood during the tasks and also responded to measures of expended effort and task difficulty. In addition, participants indicated whether they expected that they would perform better on work-relevant tasks while sitting or standing. Despite participants’ beliefs that they would perform worse on most tasks while standing, body position did not affect reading comprehension or creativity performance, nor did it affect perceptions of effort or difficulty. Mood was also unaffected by position, with a few exceptions: Participants exhibited greater task engagement (i.e., interest, enthusiasm, and alertness) and less comfort while standing rather than sitting. In sum, performance and psychological experience as related to task completion were nearly entirely uninfluenced by acute (~30-min) standing desk use. View Full-Tex

    Equilibrium Statistical Mechanics of Fermion Lattice Systems

    Full text link
    We study equilibrium statistical mechanics of Fermion lattice systems which require a different treatment compared with spin lattice systems due to the non-commutativity of local algebras for disjoint regions. Our major result is the equivalence of the KMS condition and the variational principle with a minimal assumption for the dynamics and without any explicit assumption on the potential. It holds also for spin lattice systems as well, yielding a vast improvement over known results. All formulations are in terms of a C*-dynamical systems for the Fermion (CAR) algebra with all or a part of the following assumptions: (I) The interaction is even with respect to the Fermion number. (Automatically satisfied when (IV) below is assumed.) (II) All strictly local elements of the algebra have the first time derivative. (III) The time derivatives in (II) determine the dynamics. (IV) The interaction is lattice translation invariant. A major technical tool is the conditional expectation from the total algebra onto the local subalgebra for any finite subset of the lattice, which induces a system of commuting squares. This technique overcomes the lack of tensor product structures for Fermion systems and even simplifies many known arguments for spin lattice systems.Comment: 103 pages, no figure. The Section 13 has become simpler and a problem in 14.1 is settled thanks to a referee. The format has been revised according to the suggestion of this and the other referee

    A Schmidt number for density matrices

    Get PDF
    We introduce the notion of a Schmidt number of a bipartite density matrix, characterizing the minimum Schmidt rank of the pure states that are needed to construct the density matrix. We prove that Schmidt number is nonincreasing under local quantum operations and classical communication. We show that kk-positive maps witness Schmidt number, in the same way that positive maps witness entanglement. We show that the family of states which is made from mixing the completely mixed state and a maximally entangled state have increasing Schmidt number depending on the amount of maximally entangled state that is mixed in. We show that Schmidt number {\it does not necessarily increase} when taking tensor copies of a density matrix ρ\rho; we give an example of a density matrix for which the Schmidt numbers of ρ\rho and ρ⊗ρ\rho \otimes \rho are both 2.Comment: 5 pages RevTex, 1 typo in Proof Lemma 1 correcte

    Different Types of Conditional Expectation and the Lueders - von Neumann Quantum Measurement

    Full text link
    In operator algebra theory, a conditional expectation is usually assumed to be a projection map onto a sub-algebra. In the paper, a further type of conditional expectation and an extension of the Lueders - von Neumann measurement to observables with continuous spectra are considered; both are defined for a single operator and become a projection map only if they exist for all operators. Criteria for the existence of the different types of conditional expectation and of the extension of the Lueders - von Neumann measurement are presented, and the question whether they coincide is studied. All this is done in the general framework of Jordan operator algebras. The examples considered include the type I and type II operator algebras, the standard Hilbert space model of quantum mechanics, and a no-go result concerning the conditional expectation of observables that satisfy the canonical commutator relation.Comment: 10 pages, the original publication is available at http://www.springerlink.co

    The Effect of Wearing an Obese Body Suit on Snack Food Consumption and Alcohol Consumption

    Get PDF
    A previous study showed that wearing an obese body suit results in increased snack food consumption. The aim of this study was to explore mechanisms that may explain the effect that wearing an obese body suit has on snack food consumption. We examined two potential explanations; that the psychosocial experience of being overweight resulted in stereotype consistent behaviour (overeating) or in impairments to self-control. Ninety-four women participated in a laboratory study in which they were asked to wear an obese body suit or control clothing in a public setting, before being given access to snack food and alcohol. Clothing condition had no effect on snack food or alcohol consumption. It is possible that the presence of alcohol in the taste test removed the previously observed effect of the obese body suit on snack food consumption

    Integrated engineering environments for large complex products

    Get PDF
    An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach

    Evidence for Bound Entangled States with Negative Partial Transpose

    Get PDF
    We exhibit a two-parameter family of bipartite mixed states ρbc\rho_{bc}, in a d⊗dd\otimes d Hilbert space, which are negative under partial transposition (NPT), but for which we conjecture that no maximally entangled pure states in 2⊗22\otimes 2 can be distilled by local quantum operations and classical communication (LQ+CC). Evidence for this undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement from any arbitrarily large number of copies of ρbc\rho_{bc} using a projection on 2⊗22\otimes 2. These states are canonical NPT states in the sense that any bipartite mixed state in any dimension with NPT can be reduced by LQ+CC operations to an NPT state of the ρbc\rho_{bc} form. We show that the main question about the distillability of mixed states can be formulated as an open mathematical question about the properties of composed positive linear maps.Comment: Revtex, 19 pages, 2 eps figures. v2,3: very minor changes, submitted to Phys. Rev. A. v4: minor typos correcte

    The existence problem for dynamics of dissipative systems in quantum probability

    Full text link
    Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following C∗C^{\ast}-algebraic setting: A given hermitian dissipative mapping δ\delta is densely defined in a unital C∗C^{\ast}-algebra A\mathfrak{A}. The identity element in A{\frak A} is also in the domain of δ\delta. Completely dissipative maps δ\delta are defined by the requirement that the induced maps, (aij)→(δ(aij))(a_{ij})\to (\delta (a_{ij})), are dissipative on the nn by nn complex matrices over A{\frak A} for all nn. We establish the existence of different types of maximal extensions of completely dissipative maps. If the enveloping von Neumann algebra of A{\frak A} is injective, we show the existence of an extension of δ\delta which is the infinitesimal generator of a quantum dynamical semigroup of completely positive maps in the von Neumann algebra. If δ\delta is a given well-behaved *-derivation, then we show that each of the maps δ\delta and −δ-\delta is completely dissipative.Comment: 24 pages, LaTeX/REVTeX v. 4.0, submitted to J. Math. Phys.; PACS 02., 02.10.Hh, 02.30.Tb, 03.65.-w, 05.30.-
    • …
    corecore