169 research outputs found

    Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences

    Full text link
    Motivated by the known autocorrelation properties of the Rudin-Shapiro sequence, we study the discrete correlation among infinite sequences over a finite alphabet, where we just take into account whether two symbols are identical. We show by combinatorial means that sequences cannot be "too" different, and by an explicit construction generalizing the Rudin-Shapiro sequence, we show that we can achieve the maximum possible difference.Comment: Improved Introduction and new Section 6 (Lovasz local lemma

    Remarks on separating words

    Get PDF
    The separating words problem asks for the size of the smallest DFA needed to distinguish between two words of length <= n (by accepting one and rejecting the other). In this paper we survey what is known and unknown about the problem, consider some variations, and prove several new results

    Summation of Series Defined by Counting Blocks of Digits

    Get PDF
    We discuss the summation of certain series defined by counting blocks of digits in the BB-ary expansion of an integer. For example, if s2(n)s_2(n) denotes the sum of the base-2 digits of nn, we show that n1s2(n)/(2n(2n+1))=(γ+log4π)/2\sum_{n \geq 1} s_2(n)/(2n(2n+1)) = (\gamma + \log \frac{4}{\pi})/2. We recover this previous result of Sondow in math.NT/0508042 and provide several generalizations.Comment: 12 pages, Introduction expanded, references added, accepted by J. Number Theor
    corecore