879 research outputs found

### Colliding black holes with linearized gravity

We give a brief summary of results and ongoing research in the application of
linearized theory to the study of black hole collisions in the limit in which
the holes start close to each other. This approximation can be a valuable tool
for comparison and code-checking of full numerical relativity computations. The
approximation works quite well for the head-on case and this is motivation to
pursue its use in other more interesting contexts. We summarize current efforts
towards establishing the domain of validity of the approximation and its use in
generation and evolution of initial data for more interesting physical cases.Comment: 4 pages, RevTeX, 2 figures included with epsf, to appear in the
Proceedings of the Sixth Canadian Conference on General Relativity and
Relativistic Astrophysic

### Flow structure in a model of aircraft trailing vortices

We consider a model of incompressible trailing vortices consisting of an array of counter-rotating structures in a doubly periodic domain, infinite in the vertical direction. The two-dimensional vortex array of Mallier and Maslowe is combined with an axial velocity profile chosen proportional to the initial axial vorticity to provide an initial condition for the vortex wake. This base flow is a weak solution of the steady Euler equations with three velocity components that are functions of two spatial coordinates, thus allowing its linear stability properties to be investigated. These are used to interpret several stages in the development of vortex structure observed in fully three-dimensional direct numerical simulation (DNS) at Reynolds numbers Gamma/(2pinu)=[script O](1000). For sufficiently high axial velocity, its effect can be seen, in that each vortex in the linear array first develops helical structures before undergoing a period of relaminarization. At later times the more slowly growing cooperative elliptical instabilities become apparent, but the helical structure persists and the observed vortical structures remain coherent for longer periods than in the absence of axial velocity. Using the stretched-vortex subgrid model, large-eddy simulation runs are performed at large Reynolds numbers and a mixing transition identified at about Re=1–2×10^4. Similar phenomena are observed in these simulations as are seen in the DNS

### Perturbations of the Kerr spacetime in horizon penetrating coordinates

We derive the Teukolsky equation for perturbations of a Kerr spacetime when
the spacetime metric is written in either ingoing or outgoing Kerr-Schild form.
We also write explicit formulae for setting up the initial data for the
Teukolsky equation in the time domain in terms of a three metric and an
extrinsic curvature. The motivation of this work is to have in place a
formalism to study the evolution in the ``close limit'' of two recently
proposed solutions to the initial value problem in general relativity that are
based on Kerr-Schild slicings. A perturbative formalism in horizon penetrating
coordinates is also very desirable in connection with numerical relativity
simulations using black hole ``excision''.Comment: 8 pages, RevTex, 2 figures, final version to appear in CQ

### Unified model of loop quantum gravity and matter

We reconsider the unified model of gravitation and Yang--Mills interactions
proposed by Chakraborty and Peld\'an, in the light of recent formal
developments in loop quantum gravity. In particular, we show that one can
promote the Hamiltonian constraint of the unified model to a well defined
anomaly-free quantum operator using the techniques introduced by Thiemann, at
least for the Euclidean theory. The Lorentzian version of the model can be
consistently constructed, but at the moment appears to yield a correct weak
field theory only under restrictive assumptions, and its quantization appears
problematic.Comment: 4 pages, dedicated to Michael P. Ryan on the occasion of his sixtieth
birthda

### Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock

Large-eddy simulations of the Richtmyer–Meshkov instability with reshock are pre- sented and the results are compared with experiments. Several configurations of shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been simulated to match previous experiments and good agreement is found in the growth rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in this study allows for subgrid continuation modelling, where statistics of the unresolved scales of the flow are estimated. In particular, this multiscale modelling allows the anisotropy of the flow to be extended to the dissipation scale, eta, and estimates to be formed for the subgrid probability density function of the mixture fraction of air/SF6 based on the subgrid variance, including the effect of Schmidt number

### 17 ways to say yes:Toward nuanced tone of voice in AAC and speech technology

People with complex communication needs who use speech-generating devices have very little expressive control over their tone of voice. Despite its importance in human interaction, the issue of tone of voice remains all but absent from AAC research and development however. In this paper, we describe three interdisciplinary projects, past, present and future: The critical design collection Six Speaking Chairs has provoked deeper discussion and inspired a social model of tone of voice; the speculative concept Speech Hedge illustrates challenges and opportunities in designing more expressive user interfaces; the pilot project Tonetable could enable participatory research and seed a research network around tone of voice. We speculate that more radical interactions might expand frontiers of AAC and disrupt speech technology as a whole

### A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

### Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations

We study the shock-driven turbulent mixing that occurs when a perturbed planar density interface is impacted by a planar shock wave of moderate strength and subsequently reshocked. The present work is a systematic study of the influence of the relative molecular weights of the gases in the form of the initial Atwood ratio A. We investigate the cases A = ± 0.21, ±0.67 and ±0.87 that correspond to the realistic gas combinations air–CO_2, air–SF_6 and H_2–air. A canonical, three-dimensional numerical experiment, using the large-eddy simulation technique with an explicit subgrid model, reproduces the interaction within a shock tube with an endwall where the incident shock Mach number is ~1.5 and the initial interface perturbation has a fixed dominant wavelength and a fixed amplitude-to-wavelength ratio ~0.1. For positive Atwood configurations, the reshock is followed by secondary waves in the form of alternate expansion and compression waves travelling between the endwall and the mixing zone. These reverberations are shown to intensify turbulent kinetic energy and dissipation across the mixing zone. In contrast, negative Atwood number configurations produce multiple secondary reshocks following the primary reshock, and their effect on the mixing region is less pronounced. As the magnitude of A is increased, the mixing zone tends to evolve less symmetrically. The mixing zone growth rate following the primary reshock approaches a linear evolution prior to the secondary wave interactions. When considering the full range of examined Atwood numbers, measurements of this growth rate do not agree well with predictions of existing analytic reshock models such as the model by Mikaelian (Physica D, vol. 36, 1989, p. 343). Accordingly, we propose an empirical formula and also a semi-analytical, impulsive model based on a diffuse-interface approach to describe the A-dependence of the post-reshock growth rate

- …