63 research outputs found

    Likelihood Analysis of Repeating in the BATSE Catalogue

    Get PDF
    I describe a new likelihood technique, based on counts-in-cells statistics, that I use to analyze repeating in the BATSE 1B and 2B catalogues. Using the 1B data, I find that repeating is preferred over non-repeating by 4.3:1 odds, with a well-defined peak at 5-6 repetitions per source. I find that the post-1B data are consistent with the repeating model inferred from the 1B data, after taking into account the lower fraction of bursts with well-determined positions. Combining the two data sets, I find that the odds favoring repeating over non-repeating are almost unaffected at 4:1, with a narrower peak at 5 repetitions per source. I conclude that the data sets are consistent both with each other and with repeating, and that for these data sets the odds favor repeating.Comment: 5 pages including 3 encapsulated figures, as a uuencoded, gzipped, Postscript file. To appear in Proc. of the 1995 La Jolla workshop ``High Velocity Neutron Stars and Gamma-Ray Bursts'' eds. Rothschild, R. et al., AIP, New Yor

    Wiggly Relativistic Strings

    Full text link
    We derive the equations of motion for general strings, i.e. strings with arbitrary relation between tension τ\tau and energy per unit length ϵ\epsilon. The renormalization of τ\tau and ϵ\epsilon that results from averaging out small scale wiggles on the string is obtained in the general case to lowest order in the amount of wiggliness. For Nambu-Goto strings we find deviations from the equation of state ϵτ=constant\epsilon \tau = {\rm constant} in higher orders. Finally we argue that wiggliness may radically modify the gauge cosmic string scenario.Comment: 10 pages, LaTeX, UFIFT-HEP-92-1

    Optical/Near-Infrared Observations of GRO J1744-28

    Full text link
    We present results from a series of optical (g and r-band) and near-infrared (K'-band) observations of the region of the sky including the entire XTE and ROSAT error circles for the ``Bursting Pulsar'' GRO J1744-28. These data were taken with the Astrophysical Research Consortium's 3.5-m telescope at Apache Point Observatory and with the 2.2-m telescope at the European Southern Observatory. We see no new object, nor any significant brightening of any known object, in these error circles, with the exception of an object detected in our 8 February 1996 image. This object has already been proposed as a near-infrared counterpart to GRO J1744-28. While it is seen in only two of our ten 8 February frames, there is no evidence that this is an instrumental artifact, suggesting the possibility of near-infrared flares from GRO J1744-28, similar to those that have been reported from the Rapid Burster. The distance to the ``Bursting Pulsar'' must be more than 2 kpc, and we suggest that it is more than 7 kpc.Comment: 21 pages, 5 JPEG plates, 2 postscript figures. This paper will appear in the May 1, 1997 edition of the Astrophysical Journa

    Extreme Ultraviolet Quasar Colours from GALEX Observations of the SDSS DR14Q Catalogue

    Get PDF
    The rest-frame far to extreme ultraviolet (UV) colour–redshift relationship has been constructed from data on over 480,000 quasars carefully cross-matched between SDSS Data Release 14 and the final GALEX photometric catalogue. UV matching and detection probabilities are given for all the quasars, including dependencies on separation, optical brightness, and redshift. Detection limits are also provided for all objects. The UV colour distributions are skewed redward at virtually all redshifts, especially when detection limits are accounted for. The median GALEX far-UV minus near-UV (FUV − NUV) colour–redshift relation is reliably determined up to z ≈ 2.8, corresponding to rest-frame wavelengths as short as 400 Å. Extreme UV (EUV) colours are substantially redder than found previously, when detection limits are properly accounted for. Quasar template spectra were forward modelled through the GALEX bandpasses, accounting for intergalactic opacity, intrinsic reddening, and continuum slope variations. Intergalactic absorption by itself cannot account for the very red EUV colours. The colour–redshift relation is consistent with no intrinsic reddening, at least for SMC-like extinction. The best model fit has a FUV continuum power-law slope αν, FUV = −0.34 ± 0.03 consistent with previous results, but an EUV slope αν, EUV = −2.90 ± 0.04 that is much redder and inconsistent with any previous composite value (all ≳ −2.0). The EUV slope difference can be attributed in part to the tendency of previous studies to preferentially select UV brighter and bluer objects. The weak EUV flux suggests quasar accretion disc models that include outflows such as disc winds

    Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops

    Get PDF
    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict ff, the fraction of cosmic string loops which collapse to form black holes, and μ\mu, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters ff and μ\mu is due to the energy density in 100MeV100 MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of ff are reliable, our results severely restrict μ\mu, and therefore limit the viability of the cosmic string large-scale structure scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages, FERMILAB-Pub-93/137-

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps
    corecore