3 research outputs found
Integrated analysis of long non-coding RNAs and mRNA expression profiles identified potential interactions regulating melanogenesis in chicken skin
1. Long non-coding RNAs (lncRNAs) play important roles in various physiological functions. However, the mechanisms underlying the regulation of lncRNAs in melanogenesis remain unclear. To determine the molecular mechanisms involved in skin melanogenesis, the present study depicted the expression profiles of lncRNAs and messenger RNAs (mRNAs) in black- (B group) and white- (W group) skinned chickens using RNA sequencing. 2. In total, 373 differentially expressed lncRNAs (DELs; 203 up-regulated and 170 down-regulated) and 253 differentially expressed genes (DEGs; 152 up-regulated and 101 down-regulated) were identified between the B and W groups. A total of eight known melanogenesis-related genes were identified (KIT, TYRP1, DCT (TYRP2), SLC45A2, OCA2, EDNRB2, TRPM1 and RAB38). 3. Functional annotation of the co-expressed DEGs and DELs was performed using Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses. The co-expressed DEGs were mainly involved in melanogenesis and the co-expressed genes of 117 and 108 DELs were significantly enriched in the melanogenesis and tyrosine metabolism pathways, respectively. 4. The DEL-DEG interaction network revealed that three lncRNAs (XR_003072387.1, XR_003075112.1, and XR_003077033.1) and DCT genes may have key roles in regulating melanogenesis in chicken skin. This data provides the groundwork for studying the lncRNA regulatory mechanisms of skin melanogenesis and suggested a new perspective on the modulation of melanogenesis in chicken skin based on a lncRNA-mRNA causal regulatory network.</p
Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken
1. The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. 2. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. 3. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19270 lncRNA/mRNA pairs were identified, including 16 398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA – mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. 4. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.</p
Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01mmoll-1, P=3.4 × 10-12), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035pmolinsulin mmolglucose-1, P=0.048), but higher 2-h glucose (β=0.16±0.05mmoll-1, P=4.3 × 10-4). We identify a gene-based association with FG at G6PC2 (p SKAT =6.8 × 10-6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004mmoll-1, P=1.3 × 10-8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility. © 2015 Macmillan Publishers Limited. All rights reserved.</p
