2 research outputs found

    Enantioselective Biotransformation of Hexabromocyclododecane by in Vitro Rat and Trout Hepatic Sub-Cellular Fractions

    No full text
    α-, β-, and γ-Hexabromocyclododecanes (HBCDs) were subjected to in vitro biotransformation experiments with rat and trout liver S9 fractions for different incubation times (10, 30, and 60 min) at 2 concentration levels (1 and 10 μM). The metabolic degradation of target HBCDs followed first order kinetics. Whereas β-HBCD undergoes rapid biotransformation (<i>t</i><sub>0.5</sub> = 6.4 and 38.1 min in rat and trout, respectively), α-HBCD appears the most resistant to metabolic degradation (<i>t</i><sub>0.5</sub> = 17.1 and 134.9 min). The biotransformation rate in trout was slower than in rat. Investigation of HBCD degradation profiles revealed the presence of at least 3 pentabromocyclododecene (PBCD) and 2 tetrabromocyclododecadiene (TBCD) isomers indicating reductive debromination as a metabolic pathway for HBCDs. Both mono- and di- hydroxyl metabolites were identified for parent HBCDs, while only mono hydroxyl metabolites were detected for PBCDs and TBCDs. Interestingly, δ-HBCD was detected only in trout S9 fraction assays indicating metabolic interconversion of test HBCD diastereomers during biotransformation in trout. Finally, enantioselective analysis showed significant enrichment of the (−)-α-HBCD enantiomer (EF = 0.321 and 0.419 after 60 min incubation in rat and trout, respectively). The greater enrichment of (−)-α-HBCD in rat than in trout underlines the species-specific differences in HBCD metabolism and the need for caution when extending similar results from animal studies to humans

    Molecular toxicity of cerium oxide nanoparticles to the freshwater alga <i>Chlamydomonas reinhardtii</i> is associated with supra-environmental exposure concentrations

    No full text
    <p>Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, <i>Chlamydomonas reinhardtii</i>, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within <i>C. reinhardtii</i>, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level.</p
    corecore