20,666 research outputs found
One-way quantum computation with four-dimensional photonic qudits
We consider the possibility of performing linear optical quantum computation
making use of extra photonic degrees of freedom. In particular we focus on the
case where we use photons as quadbits. The basic 2-quadbit cluster state is a
hyper-entangled state across polarization and two spatial mode degrees of
freedom. We examine the non-deterministic methods whereby such states can be
created from single photons and/or Bell pairs, and then give some mechanisms
for performing higher-dimensional fusion gates.Comment: 10 figures (typos are corrected
SIRS dynamics on random networks: simulations and analytical models
The standard pair approximation equations (PA) for the
Susceptible-Infective-Recovered-Susceptible (SIRS) model of infection spread on
a network of homogeneous degree predict a thin phase of sustained
oscillations for parameter values that correspond to diseases that confer long
lasting immunity. Here we present a study of the dependence of this oscillatory
phase on the parameter and of its relevance to understand the behaviour of
simulations on networks. For , we compare the phase diagram of the PA
model with the results of simulations on regular random graphs (RRG) of the
same degree. We show that for parameter values in the oscillatory phase, and
even for large system sizes, the simulations either die out or exhibit damped
oscillations, depending on the initial conditions. This failure of the standard
PA model to capture the qualitative behaviour of the simulations on large RRGs
is currently being investigated.Comment: 6 pages, 3 figures, WIPP to be published in Conference proceedings
Complex'2009 February 23-25, Shanghai, Chin
Multiple testing correction in linear mixed models.
BackgroundMultiple hypothesis testing is a major issue in genome-wide association studies (GWAS), which often analyze millions of markers. The permutation test is considered to be the gold standard in multiple testing correction as it accurately takes into account the correlation structure of the genome. Recently, the linear mixed model (LMM) has become the standard practice in GWAS, addressing issues of population structure and insufficient power. However, none of the current multiple testing approaches are applicable to LMM.ResultsWe were able to estimate per-marker thresholds as accurately as the gold standard approach in real and simulated datasets, while reducing the time required from months to hours. We applied our approach to mouse, yeast, and human datasets to demonstrate the accuracy and efficiency of our approach.ConclusionsWe provide an efficient and accurate multiple testing correction approach for linear mixed models. We further provide an intuition about the relationships between per-marker threshold, genetic relatedness, and heritability, based on our observations in real data
Isoscalar meson spectroscopy from lattice QCD
We extract to high statistical precision an excited spectrum of
single-particle isoscalar mesons using lattice QCD, including states of high
spin and, for the first time, light exotic JPC isoscalars. The use of a novel
quark field construction has enabled us to overcome the long-standing challenge
of efficiently including quark-annihilation contributions. Hidden-flavor mixing
angles are extracted and while most states are found to be close to ideally
flavor mixed, there are examples of large mixing in the pseudoscalar and axial
sectors in line with experiment. The exotic JPC isoscalar states appear at a
mass scale comparable to the exotic isovector states.Comment: 4 pages, 4 figure
- âŠ