16 research outputs found
Left: Concentration profile as a function of ; Right: Concentration profile as function of
<p>Here we vary Schmidt and Soret numbers for both slip and no-slip conditions.</p
Top left: Velocity profile as a function of ; Top right: Temperature profiles as function of
<p>Bottom left: Concentration profile as function of Here we vary the suction/blowing parameters for both slip and no–slip conditions.</p
Top left: Velocity profile as a function of ; Top right: Temperature profiles as function of Bottom left: Concentration profile as function of
<p>In all of these figures we vary permeability with slip and no–slip conditions.</p
Top left: Velocity profile as a function of ; Top right: Temperature profiles as function of
<p>Bottom left: Concentration profile as function of In all of these figures we vary velocity, thermal and concentration slip parameters for both slip and no–slip conditions.</p
Effect of variation in temperature slip parameter <i>β</i> on temperature profile <i>θ</i>(<i>η</i>) of Newtonian and non-Newtonian fluids.
<p>Effect of variation in temperature slip parameter <i>β</i> on temperature profile <i>θ</i>(<i>η</i>) of Newtonian and non-Newtonian fluids.</p
Effect of variation in permeability parameter <i>k</i>* on temperature profile <i>θ</i>(<i>η</i>) of Newtonian and non-Newtonian fluids.
<p>Effect of variation in permeability parameter <i>k</i>* on temperature profile <i>θ</i>(<i>η</i>) of Newtonian and non-Newtonian fluids.</p
Effect of variation in permeability parameter <i>k</i>* on velocity profile <i>f</i>′(<i>η</i>) of Newtonian and non-Newtonian fluids.
<p>Effect of variation in permeability parameter <i>k</i>* on velocity profile <i>f</i>′(<i>η</i>) of Newtonian and non-Newtonian fluids.</p
The velocity and shear stress profiles for power-law index <i>n</i> = 1, permeability parameter <i>k</i>* = 0 and velocity slip parameter <i>δ</i> = 0.
<p>The velocity and shear stress profiles for power-law index <i>n</i> = 1, permeability parameter <i>k</i>* = 0 and velocity slip parameter <i>δ</i> = 0.</p