34,919 research outputs found
Book Review of \u3cem\u3eCounselling the Catholic\u3c/em\u3e, by George Hagmaier and Robert Gleason
United States Laws and Regulations Applicable to U.S. Citizens and U.S. Activities in Antarctica
Kernel methods in machine learning
We review machine learning methods employing positive definite kernels. These
methods formulate learning and estimation problems in a reproducing kernel
Hilbert space (RKHS) of functions defined on the data domain, expanded in terms
of a kernel. Working in linear spaces of function has the benefit of
facilitating the construction and analysis of learning algorithms while at the
same time allowing large classes of functions. The latter include nonlinear
functions as well as functions defined on nonvectorial data. We cover a wide
range of methods, ranging from binary classifiers to sophisticated methods for
estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Formation of small-scale structure in SUSY CDM
The lightest supersymmetric particle, most likely the lightest neutralino, is
one of the most prominent particle candidates for cold dark matter (CDM). We
show that the primordial spectrum of density fluctuations in neutralino CDM has
a sharp cut-off, induced by two different damping mechanisms. During the
kinetic decoupling of neutralinos, non-equilibrium processes constitute
viscosity effects, which damp or even absorb density perturbations in CDM.
After the last scattering of neutralinos, free streaming induces neutralino
flows from overdense to underdense regions of space. Both damping mechanisms
together define a minimal mass scale for perturbations in neutralino CDM,
before the inhomogeneities enter the nonlinear epoch of structure formation. We
find that the very first gravitationally bound neutralino clouds ought to have
masses above 10^{-6} solar masses, which is six orders of magnitude above the
mass of possible axion miniclusters.Comment: 7 pages, 3 figures, to appear in proceedings of "IDM 2002, 4th
International Workshop on the Identification of Dark Matter
Damping scales of neutralino cold dark matter
The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark matter (CDM) has a sharp cut-off due to two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos at about 30 MeV (for typical neutralino and sfermion masses) and free streaming after last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling temperature by one order of magnitude. The cut-off in the primordial spectrum defines a minimal mass for CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravitationally bound neutralino clouds have to have masses above 10 7M . PACS numbers: 14.80.Ly, 98.35.Ce, 98.80.-k, 98.80.C
- …
