107,921 research outputs found
Effects of turbulent dust grain motion to interstellar chemistry
Theoretical studies have revealed that dust grains are usually moving fast
through the turbulent interstellar gas, which could have significant effects
upon interstellar chemistry by modifying grain accretion. This effect is
investigated in this work on the basis of numerical gas-grain chemical
modeling. Major features of the grain motion effect in the typical environment
of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase
(both neutral and ionic) abundances and increase of surface abundances by up to
2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier
evolution ages for gas-phase species and to later ages for surface species by
factors of about ten; 3) a few exceptional cases in which some species turn out
to be insensitive to this effect and some other species can show opposite
behaviors too. These effects usually begin to emerge from a typical DC model
age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM)
can help overcome the Coulomb repulsive barrier to enable effective accretion
of cations onto positively charged grains. As a result, the grain motion
greatly enhances the abundances of some gas-phase and surface species by
factors up to 2-6 or more orders of magnitude in the CNM model. The grain
motion effect in a typical molecular cloud (MC) is intermediate between that of
the DC and CNM models, but with weaker strength. The grain motion is found to
be important to consider in chemical simulations of typical interstellar
medium.Comment: 20 pages, 10 figures and 2 table
Searching for radiative pumping lines of OH masers: II. The 53.3um absorption line towards 1612MHz OH maser sources
This paper analyzes the 53.3um line in the ISO LWS spectra towards a similar
sample of OH/IR sources. We find 137 LWS spectra covering 53.3um and associated
with 47 galactic OH/IR sources. Ten of these galactic OH/IR sources are found
to show and another 5 ones tentatively show the 53.3um absorption while another
7 sources highly probably do not show this line. The source class is found to
be correlated with the type of spectral profile: red supergiants (RSGs) and AGB
stars tend to show strong blue-shifted filling emission in their 53.3um
absorption line profiles while HII regions tend to show a weak red-shifted
filling emission in the line profile. GC sources and megamasers do not show
filling emission feature. It is argued that the filling emission might be the
manifestation of an unresolved half emission half absorption profile of the
53.3um doublet. The 53.3 to 34.6um equivalent width (EW) ratio is close to
unity for RSGs but much larger than unity for GC sources and megamasers while H
II regions only show the 53.3um line. The pump rate defined as maser to IR
photon flux ratio is approximately 5% for RSGs. The pump rates of GC sources
are three order of magnitude smaller. Both the large 53.3 to 34.6um EW ratio
and the small pump rate of the GC OH masers reflect that the two detected
`pumping lines' in these sources are actually of interstellar origin. The pump
rate of Arp 220 is 32%--much larger than that of RSGs, which indicates that the
contribution of other pumping mechanisms to this megamaser is important.Comment: 34 pages, 12 figures, 4 table
Effects of Australian Economic Activities on Waste Generation and Treatment
Understanding the relationships between the Australian economic system and waste generation from intermediate sectors and households is a prerequisite for planning and implementing waste management strategies at a national scale. Data of waste generation accounts link to those of national economic accounts. However, in Australia, some years’ data are absent and so these links cannot be made. To rectify this data gap, this paper interpolates and extrapolates the Australian input-output table (IOT) of 2010–2011. Waste input-output (WIO) analysis is then used to assess the effects of the Australian economy on waste generation and treatment between 2009–2010 and 2010–2011. Analysis indicated that the result of interpolation was more reasonable than that of extrapolation, and the interpolation of the Australian IOT of 2010–2011 can be applicable. This comparative analysis of the time series data in WIO model has identified that: (1) per million $AUD of output of the Construction sector generated the most amount of direct and total waste during the period; (2) the relationships between the development of Australian economy and waste generation illustrate that the Australian economy is currently a traditional linear economy; (3) the effectiveness of waste-related policies are shown by the growth of the sums of direct and total effects of intermediate sectors on the Recovery sector; and (4) the amount of waste generated by households increased sharply over the two years. The physical flows of waste footprint show details of waste generation and treatment in the Australian economic system. The information provided in this paper is beneficial to formulate tailor-made policies for waste management in Australia
Solar transition region in the quiet Sun and active regions
The solar transition region (TR), in which above the photosphere the tempera-
ture increases rapidly and the density drops dramatically, is believed to play
an important role in coronal heating and solar wind acceleration. Long-lasting
up-flows are present in the upper TR and interpreted as signatures of mass
supply to large coronal loops in the quiet Sun. Coronal bright points (BPs) are
local heating phenomena and we found a different Doppler-shift pattern at TR
and coronal temperatures in one BP, which might be related to the twisted loop
system. The dominant energy loss in the lower TR is the Ly-alpha emission. It
has been found that most Ly-alpha radiance profiles are stronger in the blue
peak, an asymmetry opposite to higher order Lyman lines. This asymmetry is
stronger when the downflow in the middle TR is stronger, indicating that the TR
flows play an important role in the line formation process. The peak separation
of Ly-alpha is found to be larger in coronal holes than in the quiet Sun,
reflecting the different magnetic structures and radiation fields between the
two regions. The Lyman line profiles are found to be not reversed in sunspot
plume and umbra regions, while they are obviously reversed in the surrounding
plage region. At TR temperatures, the densities of the sunspot plume and umbra
are a factor of 10 lower than of the plage, indicating that the sunspot plasma
emitting at TR temperatures is higher and possibly more extended above sunspots
than above the plage region.Comment: This paper has been withdrawn by the author because it's not a
referred pape
Scales of Fermion Mass Generation and Electroweak Symmetry Breaking
The scale of mass generation for fermions (including neutrinos) and the scale
for electroweak symmetry breaking (EWSB) can be bounded from above by the
unitarity of scattering involving longitudinal weak gauge bosons or their
corresponding would-be Goldstone bosons. Including the exact n-body phase space
we analyze the 2 --> n () processes for the fermion-(anti)fermion
scattering into multiple gauge boson final states. Contrary to naive energy
power counting, we demonstrate that as becomes large, the competition
between an increasing energy factor and a phase-space suppression leads to a
{\it strong new upper bound} on the scale of fermion mass generation at a
finite value , which is {\it independent of the EWSB scale,} . For quarks, leptons and Majorana neutrinos, the
strongest 2 --> n limits range from about 3TeV to 130-170TeV (with ), depending on the measured fermion masses. Strikingly, given
the tiny neutrino masses as constrained by the neutrino oscillations,
neutrinoless double-beta decays and astrophysical observations, the unitarity
violation of scattering actually occurs at a scale no
higher than ~170 TeV. Implications for various mechanisms of neutrino mass
generation are analyzed. On the other hand, for the 2 --> n pure
Goldstone-boson scattering, we find that the decreasing phase space factor
always dominates over the growing overall energy factor when becomes large,
so that the best unitarity bound on the scale of EWSB remains at n=2.Comment: 67pp, to match PRD (minor typos fixed
- …