151 research outputs found

    Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2_2Se3_3

    Full text link
    We report a transport study of exfoliated few monolayer crystals of topological insulator Bi2_2Se3_3 in an electric field effect (EFE) geometry. By doping the bulk crystals with Ca, we are able to fabricate devices with sufficiently low bulk carrier density to change the sign of the Hall density with the gate voltage VgV_g. We find that the temperature TT and magnetic field dependent transport properties in the vicinity of this VgV_g can be explained by a bulk channel with activation gap of approximately 50 meV and a relatively high mobility metallic channel that dominates at low TT. The conductance (approximately 2 ×\times 7e2/he^2/h), weak anti-localization, and metallic resistance-temperature profile of the latter lead us to identify it with the protected surface state. The relative smallness of the observed gap implies limitations for EFE topological insulator devices at room temperature.Comment: 4 pages, 4 figures. In new version, panels have been removed from Figures 1, 2, and 4 to improve clarity. Additional data included in Figure 4. Introduction and discussion revised and expande

    Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    Full text link
    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi2Te3 on the ferromagnetic insulator Cr2Ge2Te6. The layers are oriented with (001) of Bi2Te3 parallel to (001) of Cr2Ge2Te6 and (110) of Bi2Te3 parallel to (100) of Cr2Ge2Te6. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi2Te3 on Cr2Ge2Te6 exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr2Ge2Te6. The 61 K Curie temperature of Cr2Ge2Te6 and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.Comment: Related papers at http://pettagroup.princeton.ed

    Thermal Hall Conductivity as a Probe of Gap Structure in Multi-band Superconductors: The Case of Ba1xKxFe2As2\rm Ba_{1-x}K_xFe_2As_2

    Full text link
    The sign and profile of the thermal Hall conductivity κxy\kappa_{xy} gives important insights into the gap structure of multi-band superconductors. With this perspective, we have investigated κxy\kappa_{xy} and the thermal conductivity κxx\kappa_{xx} in Ba1xKxFe2As2\rm Ba_{1-x}K_xFe_2As_2 which display large peak anomalies in the superconducting state. The anomalies imply that a large hole-like quasiparticle (qp) population exists below the critical temperature TcT_c. We show that the qp mean-free-path inferred from κxx\kappa_{xx} reproduces the observed anomaly in κxy\kappa_{xy}, providing a consistent estimate of a large qp population. Further, we demonstrate that the hole-like signal is consistent with a theoretical scenario where despite potentially large gap variations on the electron pockets, the minimal homogeneous gap of the superconducting phase resides at a hole pocket. Implications for probing the gap structure in the broader class of pnictide superconductors are discussed.Comment: 5 pages, 4 figures. Orientation significantly updated from previous (0811.4668v1) reflecting new theoretical understanding of experimental results and physical implications. Introduction, discussion, and figures updated including additional figure for model calculatio

    Anderson Localization from Berry-Curvature Interchange in Quantum Anomalous Hall System

    Get PDF
    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE keeps quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the \textit{interchange} of Berry curvatures carried respectively by the conduction and valence bands. At the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.Comment: 6 pages, 4 figure

    Signatures of Ultrafast Reversal of Excitonic Order in Ta₂NiSe₅

    Get PDF
    In the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we derive the equations of motion for the Ising order parameter in the phonon coupled excitonic insulator Ta₂NiSe₅ and show that it can be controllably reversed on ultrashort timescales using appropriate laser pulse sequences. Using a combination of theory and time-resolved optical reflectivity measurements, we report evidence of such order parameter reversal in Ta₂NiSe₅ based on the anomalous behavior of its coherently excited order-parameter-coupled phonons. Our Letter expands the field of ultrafast order parameter control beyond spin and charge ordered materials

    Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator

    Full text link
    Bi2Se3 is one of a handful of known topological insulators. Here we show that copper intercalation in the van der Waals gaps between the Bi2Se3 layers, yielding an electron concentration of ~ 2 x 10^20cm-3, results in superconductivity at 3.8 K in CuxBi2Se3 for x between 0.12 and 0.15. This demonstrates that Cooper pairing is possible in Bi2Se3 at accessible temperatures, with implications for study of the physics of topological insulators and potential devices.Comment: 6 pages, 4 figure
    corecore