1,342 research outputs found

    Algebraic equivalence between certain models for superfluid--insulator transition

    Full text link
    Algebraic contraction is proposed to realize mappings between models Hamiltonians. This transformation contracts the algebra of the degrees of freedom underlying the Hamiltonian. The rigorous mapping between the anisotropic XXZXXZ Heisenberg model, the Quantum Phase Model, and the Bose Hubbard Model is established as the contractions of the algebra u(2)u(2) underlying the dynamics of the XXZXXZ Heisenberg model.Comment: 5 pages, revte

    Simple Phase Bias for Superconducting Circuits

    Full text link
    A phase-bias tool, based on a trapped fluxoid in a ring, is proposed and demonstrated. It can provide arbitrary phase values and is simple to fabricate. The phase bias has been realized in two superconducting quantum interference devices, where the critical current versus magnetic flux is shown to be shifted by a \pi/2 and \pi.Comment: 5 pages, including 4 figures. Submitted to AP

    A single-electron inverter

    Full text link
    A single-electron inverter was fabricated that switches from a high output to a low output when a fraction of an electron is added to the input. For the proper operation of the inverter, the two single-electron transistors that make up the inverter must exhibit voltage gain. Voltage gain was achieved by fabricating a combination of parallel-plate gate capacitors and small tunnel junctions in a two-layer circuit. Voltage gain of 2.6 was attained at 25 mK and remained larger than one for temperatures up to 140 mK. The temperature dependence of the gain agrees with the orthodox theory of single-electron tunneling.Comment: 3 pages, 4 figures (1 color), to be published in Appl. Phys. Let

    Quantum state detection of a superconducting flux qubit using a DC-SQUID in the inductive mode

    Full text link
    We present a readout method for superconducting flux qubits. The qubit quantum flux state can be measured by determining the Josephson inductance of an inductively coupled DC superconducting quantum interference device (DC-SQUID). We determine the response function of the DC-SQUID and its back-action on the qubit during measurement. Due to driving, the qubit energy relaxation rate depends on the spectral density of the measurement circuit noise at sum and difference frequencies of the qubit Larmor frequency and SQUID driving frequency. The qubit dephasing rate is proportional to the spectral density of circuit noise at the SQUID driving frequency. These features of the backaction are qualitatively different from the case when the SQUID is used in the usual switching mode. For a particular type of readout circuit with feasible parameters we find that single shot readout of a superconducting flux qubit is possible.Comment: 11 pages, 3 figures; submitted to Phys. Rev.

    Coherent Quantum Dynamics of a Superconducting Flux Qubit

    Full text link
    We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.Comment: submitted 2 December 2002; accepted 4 February 200

    Characterising exo-ringsystems around fast-rotating stars using the Rossiter-McLaughlin effect

    Get PDF
    Planetary rings produce a distinct shape distortion in transit lightcurves. However, to accurately model such lightcurves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky projected angle of the ring system. For slow rotating stars, this mainly impacts the amplitude of the induced velocity shift, however, for fast rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modeling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW\delta W) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ\gamma) relative to the stellar rotation velocity (vv sinii, i.e. δW/Rv\delta W / R_* \gtrsim vsinii/γ\gamma). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.Comment: Accepted for publication in MNRA

    Negative differential resistance due to single-electron switching

    Full text link
    We present the multilevel fabrication and measurement of a Coulomb-blockade device displaying tunable negative differential resistance (NDR). Applications for devices displaying NDR include amplification, logic, and memory circuits. Our device consists of two Al/Alx_{x}Oy_{y} islands that are strongly coupled by an overlap capacitor. Our measurements agree excellently with a model based on the orthodox theory of single-electron transport.Comment: 3 pages, 3 figures; submitted to AP

    Parametric coupling for superconducting qubits

    Full text link
    We propose a scheme to couple two superconducting charge or flux qubits biased at their symmetry points with unequal energy splittings. Modulating the coupling constant between two qubits at the sum or difference of their two frequencies allows to bring them into resonance in the rotating frame. Switching on and off the modulation amounts to switching on and off the coupling which can be realized at nanosecond speed. We discuss various physical implementations of this idea, and find that our scheme can lead to rapid operation of a two-qubit gate.Comment: 6 page