117 research outputs found
Two-dimensional rectangle packing: on-line methods and results
The first algorithms for the on-line two-dimensional rectangle packing problem were introduced by Coppersmith and Raghavan. They showed that for a family of heuristics 13/4 is an upper bound for the asymptotic worst-case ratios. We have investigated the Next Fit and the First Fit variants of their method. We proved that the asymptotic worst-case ratio equals 13/4 for the Next Fit variant and that 49/16 is an upper bound of the asymptotic worst-case ratio for the First Fit variant.
An entropy production based method for determining the position diffusion's coefficient of a quantum Brownian motion
Quantum Brownian motion of a harmonic oscillator in the Markovian
approximation is described by the respective Caldeira-Leggett master equation.
This master equation can be brought into Lindblad form by adding a position
diffusion term to it. The coefficient of this term is either customarily taken
to be the lower bound dictated by the Dekker inequality or determined by more
detailed derivations on the linearly damped quantum harmonic oscillator. In
this paper, we explore the theoretical possibilities of determining the
position diffusion term's coefficient by analyzing the entropy production of
the master equation.Comment: 13 pages, 10 figure
Probabilistic analysis of algorithms for dual bin packing problems
In the dual bin packing problem, the objective is to assign items of given size to the largest possible number of bins, subject to the constraint that the total size of the items assigned to any bin is at least equal to 1. We carry out a probabilistic analysis of this problem under the assumption that the items are drawn independently from the uniform distribution on [0, 1] and reveal the connection between this problem and the classical bin packing problem as well as to renewal theory.
Two simple algorithms for bin covering
We define two simple algorithms for the bin covering problem and give their asymptotic performance
Range of applicability of the Hu-Paz-Zhang master equation
We investigate a case of the Hu-Paz-Zhang master equation of the
Caldeira-Leggett model without Lindblad form obtained in the weak-coupling
limit up to the second-order perturbation. In our study, we use Gaussian
initial states to be able to employ a sufficient and necessary condition, which
can expose positivity violations of the density operator during the time
evolution. We demonstrate that the evolution of the non-Markovian master
equation has problems when the stationary solution is not a positive operator,
i.e., does not have physical interpretation. We also show that solutions always
remain physical for small-times of evolution. Moreover, we identify a strong
anomalous behavior, when the trace of the solution is diverging. We also
provide results for the corresponding Markovian master equation and show that
positivity violations occur for various types of initial conditions even when
the stationary solution is a positive operator. Based on our numerical results,
we conclude that this non-Markovian master equation is superior to the
corresponding Markovian one.Comment: 14 pages, 19 figure
Probabilistic analysis of algorithms for dual bin packing problems
In the dual bin packing problem, the objective is to assign items of given size to the largest possible number of bins, subject to the constraint that the total size of the items assigned to any bin is at least equal to 1. We carry out a probabilistic analysis of this problem under the assumption that the items are drawn independently from the uniform distribution on [0, 1] and reveal the connection between this problem and the classical bin packing problem as well as to renewal theory
A Robust AFPTAS for Online Bin Packing with Polynomial Migration
In this paper we develop general LP and ILP techniques to find an approximate
solution with improved objective value close to an existing solution. The task
of improving an approximate solution is closely related to a classical theorem
of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is
often applied in designing robust algorithms for online problems. We apply our
new techniques to the online bin packing problem, where it is allowed to
reassign a certain number of items, measured by the migration factor. The
migration factor is defined by the total size of reassigned items divided by
the size of the arriving item. We obtain a robust asymptotic fully polynomial
time approximation scheme (AFPTAS) for the online bin packing problem with
migration factor bounded by a polynomial in . This answers
an open question stated by Epstein and Levin in the affirmative. As a byproduct
we prove an approximate variant of the sensitivity theorem by Cook at el. for
linear programs
A probabilistic analysis of the next fit decreasing bin packing heuristic
A probabilistic analysis is presented of the Next Fit Decreasing bin packing heuristic, in which bins are opened to accomodate the items in order of decreasing size
- âŠ