3,905 research outputs found

    Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction

    Get PDF
    In this work we made a detailed calculation of Tile Calorimeter Sampling Fraction parameter (TSF) using single electron and pion Geant4 Monte-Carlo simulation of ATLAS hadronic calorimeter (TileCal) within ATHENA --- common software framework of ATLAS. Our study was based on MC Truth data provided by special Geant4 MC simulation objects --- Calibration Hits, design which was implemented in TileCal simulation by our group. We used this TSF value for reconstruction of TileCal single pions simulation data. It was done for ATLAS Combined test beam 2004 (CTB2004) configuration setup. Results of the reconstruction were compared with MC Truth and CTB2004 reconstructed experimental data. Good agreement between them shows quite evident improvement in TileCal MC data reconstruction of hadronic shower energy in electromagnetic scale

    A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter

    Full text link
    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multi-anode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and started collecting colliding beam data by the end of the same year. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version published in IEEE-Trans.Nucl.Sci.