3,810 research outputs found

    Principle and Paradox in the Practice of Medicine

    Get PDF

    AE, D ST and their SuperMAG Counterparts : the effect of improved spatial resolution in geomagnetic indices

    Get PDF
    For decades, geomagnetic indices have been used extensively to parameterize space weather events, as input to various models and as space weather specifications. The auroral electrojet (AE) index and disturbance storm time index (DST) are two such indices that span multiple solar cycles and have been widely studied. The production of improved spatial coverage analogs to AE and DST is now possible using the SuperMAG collaboration of ground‐based magnetometers. SME is an electrojet index that shares methodology with AE. SMR is a ring current index that shares methodology with DST. As the number of magnetometer stations in the SuperMAG network increases over time, so does the spatial resolution of SME and SMR. Our statistical comparison between the established indices and their new SuperMAG counterparts finds that, for large excursions in geomagnetic activity, AE systematically underestimates SME for later cycles. The difference between distributions of recorded AE and SME values for a single solar maximum can be of the same order as changes in activity seen from one solar cycle to the next. We demonstrate that DST and SMR track each other but are subject to an approximate linear shift as a result of the procedure used to map stations to the magnetic equator. We explain the observed differences between AE and SME with the assistance of a simple model, based on the construction methodology of the electrojet indices. We show that in the case of AE and SME, it is not possible to simply translate between the two indices

    Guidelines for Teaching Object Orientation with Java

    Get PDF
    How to best teach object orientation to first year students is currently a topic of much debate. One of the tools suggested to aid in this task is BlueJ, an integrated development environment specifically designed for teaching. BlueJ supports a unique style of introduction of OO concepts. In this paper we discuss a set of problems with OO teaching, present some guidelines for better course design and show how BlueJ can be used to make significant improvements to introductory OO courses. We end by esenting a description of a possible project sequence using this teaching approach

    Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations

    Get PDF
    The sources, sinks, and overall importance of watersoluble organic carbon (WSOC) in the atmosphere are not well understood. Although the primary historical focus has been on particulate WSOC (WSOCP), here we also present results obtained using a newly developed technique that additionally measures gas-phase water-soluble organic carbon (WSOCG). These first-of-their-kind measurements show that WSOCG can often be more than ten times larger than WSOCP at both urban and remote locations. The average fraction of WSOC residing in the gas phase (fg = WSOCG/(WSOCG + WSOCP)) at five various field sites ranged from 0.64 to 0.93, implying significant differences in WSOC phase partitioning between locations. At Houston, TX, and Summit, Greenland, a repeatable diurnal pattern was observed, with minimum values for fg occurring at night. These trends likely are due, at least in part, to temperature and/or relative humidity related gas-to-particle partitioning. These coincident measurements of WSOC in both the gas and particle phases indicate that a relatively large reservoir of water-soluble organic mass is not taken into account by measurements focused only on WSOCP. In addition, a significant amount of WSOCG is available to form WSOCP or enter cloud droplets depending on the chemical and physical properties of the droplets and/or aerosols present. Citation: Anderson, C., J. E. Dibb, R. J. Griffin, and M. H. Bergin (2008), Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations, Geophys. Res. Lett., 35, L13706, doi:10.1029/2008GL033966

    Using Chemistry to Unveil the Kinematics of Starless Cores: Complex Radial Motions in Barnard 68

    Full text link
    We present observations of 13CO, C18O, HCO+, H13CO+, DCO+ and N2H+ line emission towards the Barnard 68 starless core. The line profiles are interpreted using a chemical network coupled with a radiative transfer code in order to reconstruct the radial velocity profile of the core. Our observations and modeling indicate the presence of complex radial motions, with the inward motions in the outer layers of the core but outward motions in the inner part, suggesting radial oscillations. The presence of such oscillation would imply that B68 is relatively old, typically one order of magnitude older than the age inferred from its chemical evolution and statistical core lifetimes. Our study demonstrates that chemistry can be used as a tool to constrain the radial velocity profiles of starless cores.Comment: 12 pages, 3 figures, to appear in the Astrophysical Journal Letter

    Chemistry of a protoplanetary disk with grain settling and Lyman alpha radiation

    Full text link
    We present results from a model of the chemical evolution of protoplanetary disks. In our models we directly calculate the changing propagation and penetration of a high energy radiation field with Lyman alpha radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN and SO. The inclusion of Lyman alpha radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 A. These include HCN, NH3 and CH4, for which the column densities are decreased by an order of magnitude or more due to the presence of Lyman alpha radiation in the UV spectrum. A few species, such as CO2 and SO, are enhanced by the presence of Lyman alpha radiation, but rarely by more than a factor of a few.Comment: 17 pages, 15 Figures. Accepted to Ap

    Atomic jet from SMM1 (FIRS1) in Serpens uncovers non-coeval binary companion

    Full text link
    We report on the detection of an atomic jet associated with the protostellar source SMM1 (FIRS1) in Serpens. The jet is revealed in [FeII] and [NeII] line maps observed with Spitzer/IRS, and further confirmed in HiRes IRAC and MIPS images. It is traced very close to SMM1 and peaks at ~5 arcsec" from the source at a position angle of $\sim 125 degrees. In contrast, molecular hydrogen emission becomes prominent at distances > 5" from the protostar and extends at a position angle of 160 degrees. The morphological differences suggest that the atomic emission arises from a companion source, lying in the foreground of the envelope surrounding the embedded protostar SMM1. In addition the molecular and atomic Spitzer maps disentangle the large scale CO (3-2) emission observed in the region into two distinct bipolar outflows, giving further support to a proto-binary source setup. Analysis at the peaks of the [FeII] jet show that emission arises from warm and dense gas (T ~1000 K, n(electron) 10^5 - 10^6 cm^-3). The mass flux of the jet derived independently for the [FeII] and [NeII] lines is 10^7 M(sun)/yr, pointing to a more evolved Class~I/II protostar as the driving source. All existing evidence converge to the conclusion that SMM1 is a non-coeval proto-binary source.Comment: 10 pages, 7 figures, 1 table. Accepted for publication in Astronomy \& Astrophysic

    Indirect Detection of Forming Protoplanets via Chemical Asymmetries in Disks

    Get PDF
    We examine changes in the molecular abundances resulting from increased heating due to a self-luminous planetary companion embedded within a narrow circumstellar disk gap. Using 3D models that include stellar and planetary irradiation, we find that luminous young planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting in efficient thermal desorption of molecular species that are otherwise locally frozen out. Furthermore, the heating is deposited over large regions of the disk, ±5\pm5 AU radially and spanning 60\lesssim60^\circ azimuthally. From the 3D chemical models, we compute rotational line emission models and full ALMA simulations, and find that the chemical signatures of the young planet are detectable as chemical asymmetries in 10h\sim10h observations. HCN and its isotopologues are particularly clear tracers of planetary heating for the models considered here, and emission from multiple transitions of the same species is detectable, which encodes temperature information in addition to possible velocity information from the spectra itself. We find submillimeter molecular emission will be a useful tool to study gas giant planet formation in situ, especially beyond R10R\gtrsim10 AU.Comment: 14 pages, 14 figures, accepted for publication in Ap
    corecore